Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T14:31:16.195Z Has data issue: false hasContentIssue false

Nonlinear wave propagation of large amplitude ion-acoustic solitary waves in negative ion plasmas with superthermal electrons

Published online by Cambridge University Press:  21 February 2013

S. K. EL-LABANY
Affiliation:
Theoretical Physics Group, Department of Physics, Faculty of Science, Damietta University, Damietta 34517, Egypt ([email protected])
R. SABRY
Affiliation:
Theoretical Physics Group, Department of Physics, Faculty of Science, Damietta University, Damietta 34517, Egypt ([email protected]) International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany Department of Physics, College of Science and Humanitarian Studies, Salman bin Abdulaziz University, Al Kharj, Kingdom of Saudi Arabia
E. F. EL-SHAMY
Affiliation:
Theoretical Physics Group, Department of Physics, Faculty of Science, Damietta University, Damietta 34517, Egypt ([email protected]) Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha, Kingdom of Saudi Arabia
D. M. KHEDR
Affiliation:
Theoretical Physics Group, Department of Physics, Faculty of Science, Damietta University, Damietta 34517, Egypt ([email protected])

Abstract

Investigation of arbitrary amplitude nonlinear ion-acoustic solitary waves which accompany collisionless positive–negative ion plasmas with high-energy electrons (represented by kappa distribution) is presented. Arbitrary amplitude solitary waves are investigated by deriving an energy-integral equation involving a Sagdeev-like pseudopotential. The existence regions of solitary pulses are, defined precisely, modified by the superthermality of energetic electrons. Furthermore, numerical calculations reveal that both compressive and rarefactive pulses may exist for negative ion mass groups in Titan's atmosphere. The superthermality of energetic electrons are found to modify the existence domains of large amplitude ion-acoustic waves in Titan's atmosphere. The dependence of solitary excitation characteristics on the superthermal parameter, the negative ion concentration, the positive-to-negative ions mass ratio, and the Mach number have been investigated. The present study might be helpful to understand the excitation of fully nonlinear ion-acoustic solitary pulses that may appear in the interplanetary medium and/or in the astrophysical plasmas in general.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham-Shrauner, B. and Feldman, W. C. 1977 J. Plasma Phys. 17, 123.CrossRefGoogle Scholar
Abraham-Shrauner, B., Asbridge, J. R., Bame, S. J. and Feldman, W. C. 1979 J. Geophys. Res. 84, 553.CrossRefGoogle Scholar
Armstrong, T. P., Paonessa, M. T., Bell II, E. V. and Krimigis, S. M. 1983 J. Geophys. Res. 88, 8893.CrossRefGoogle Scholar
Baumjohann, W. and Treumann, R. A. 1999 Basic Space Plasma Physics. London: Imperial College Press.Google Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., Waite, J. H. Jr. and Sittler, E. C. Jr. 2007 Geophys. Res. Lett. 34, L22103.Google Scholar
Dauxois, T. and Peyrard, M. 2005 Physics of Solitons. Cambridge, UK: Cambridge University Press.Google Scholar
Dendy, R. O., Harvey, B. M., O'Brien, M. and Bingham, R. 1995, Fokker-Planck modeling of auroral wave-particle interactions, J. Geophys. Res. 100 (A11), 2197321978, doi:10.1029/95JA00997.CrossRefGoogle Scholar
El-Awady, E. I., El-Tantawy, S. A., Moslem, W. M. and Shukla, P. K. 2010 Phys. Lett. A 374, 3216.CrossRefGoogle Scholar
Eliasson, B. and Shukla, P. K. 2012 Eur. Phys. Lett. 97, 15001.CrossRefGoogle Scholar
Formisano, V., Moreno, G. and Palmiotto, F. 1973 J. Geophys. Res. 78, 3714.CrossRefGoogle Scholar
Gottscho, R. A. and Gaebe, C. E. 1986 IEEE Trans. Plasma Sci. 14, 92.CrossRefGoogle Scholar
Ichiki, R., Yoshimura, S., Watanabe, T., Nakamura, Y. and Kawai, Y. 2002 Phys. Plasmas 9, 4481.CrossRefGoogle Scholar
Jacquinot, J., McVey, B. D. and Scharer, J. E. 1977 Phys. Rev. Lett. 39, 88.CrossRefGoogle Scholar
Leubner, M. P. 1982 J. Geophys. Res. 87, 6335.CrossRefGoogle Scholar
Leubner, M. P. 2004 Phys. Plasmas 11, 1308.CrossRefGoogle Scholar
Lui, A. T. Y. and Krimigis, S. M. 1981 Geophys. Res. Lett. 8, 527.CrossRefGoogle Scholar
Marsch, E., Mühlhäuser, K. H., Schwenn, R., Rosenbauer, H., Pillip, W. and Neubauer, F. M. 1982 J. Geophys. Res. 87, 52.CrossRefGoogle Scholar
Massey, H. 1976 Negative Ions, 3rd edn.Cambridge, UK: Cambridge University Press, 663 pp.Google Scholar
Mendis, D. A. and Rosenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.CrossRefGoogle Scholar
Remoissenet, M. 1996 Waves Called Solitons. Berlin, Germany: Springer.CrossRefGoogle Scholar
Sabry, R. 2009 Phys. Plasmas 16, 072307.CrossRefGoogle Scholar
Sabry, R., Moslem, W. M. and Shukla, P. K. 2009 Phys. Plasmas 16, 032302.CrossRefGoogle Scholar
Sabry, R., Moslem, W. M. and Shukla, P. K. 2011 Astrophys. Space Sci. 333, 203.CrossRefGoogle Scholar
Sabry, R., Moslem, W. M. and Shukla, P. K. 2012 Plasma Phys. Control. Fusion 54, 035010.CrossRefGoogle Scholar
Sagdeev, R. Z. 1979 Rev. Mod. Phys. 51, 11.CrossRefGoogle Scholar
Scudder, J. D., Sittler, E. C. and Bridge, H. S. 1981 J. Geophys. Res. 86, 8157.CrossRefGoogle Scholar
Shukla, P. K., Eliasson, B. and Stenflo, L. 2011 Eur. Phys. Lett. 95, 45001.CrossRefGoogle Scholar
Vasyliunas, V. M. 1968 J. Geophys. Res. 73, 2839.CrossRefGoogle Scholar