Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T14:38:24.878Z Has data issue: false hasContentIssue false

Non-linear theory of hydromagnetic waves in a high β plasma

Published online by Cambridge University Press:  13 March 2009

Marino Dobrowolny
Affiliation:
European Space Research Institute, Frascati, Italy
André Rogister
Affiliation:
European Space Research Institute, Frascati, Italy

Abstract

A non-linear integro-differential equation is derived, governing the space time evolution of non-linear hydromagnetic waves in a finite β collisionless plasma. The theory is done for quasi-perpendicular propagation, for wave frequencies above ion cyclotron frequency, and wavelengths smaller than ion Larmor radius. In the low β limit, the derived equation reduces to a Korteweg de Vries equation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adlam, J. H. & Allen, J. E. 1958 Phil. Mag. 3, 448.CrossRefGoogle Scholar
Alikhanov, S.G., Alinovskii, N. I., Dolgov-Savelev, G. G.Eselevich, B. G., Kurtmullaev, R. Kh., Malinovskii, V. K., Nesterikhin, Yu., Pilskii, V. I., Sagdeev, R.Z. & Semenov, V. N. 1968 Proc. 3rd Conf. on Plasma Phys. and Controlled Nuclear Fusion Res., Novosibirsk. (Also 1969 IAEA Paper CN24A1.)Google Scholar
Chew, G., Goldberger, M. & Low, F. 1956 Proc. Roy. Soc. A 236, 112.Google Scholar
Chodura, R., Keilhacker, M., Kornherr, M. & Wiedermeyer, H. 1968 Proc. 3rd Conf. on Plasma Phys. and Controlled Nuclear Fusion Res., Novosibirsk. (Also 1969 IAEA Paper CN24A3.)Google Scholar
Daughney, C. C., Holmes, L. S. & Paul, J. W. M. 1970 Phys. Rev. LetI. 25, 497.CrossRefGoogle Scholar
Dobrowolny, M. & Rogister, A. 1971 ESRIN Internal Note 136.Google Scholar
Formtsano, V., Hedgecock, P. C., Moreno, G., Sear, J. & Bolles, D. 1970 C.N.R. Lab. for Space Plasma Res., Rome, Internal Rep. LPS 70–13.Google Scholar
Friedricks, R. K. W., Crook, J. M., Kennel, C. F., Green, I. M., Scarf, F. L., Coleman, P. J. & Russel, C. T. 1970 J. Geophys. Res. 75, 3751.CrossRefGoogle Scholar
Hintz, E. 1968 Proc. 3rd Conf. on Plasma Phys. and Controlled Nuclear Fusion Res., Novosibirsk. (Also 1969 IAEA Paper CN24A2.)Google Scholar
Keilhacker, M., Kornherr, M. & Stener, K. H. 1969 Z. Physik, 223, 385.CrossRefGoogle Scholar
Kever, H. & Morikawa, G. K. 1966 Phys. Fluids, 9, 2180.CrossRefGoogle Scholar
Kever, H. & Morikawa, G. K. 1969 Phys. Fluids, 12, 2090.CrossRefGoogle Scholar
Korteweg, D. J. & De Vries, G. 1895 Phil. Mag. 39, 422.CrossRefGoogle Scholar
Krall, N. A. 1969 Phys. Fluids, 12, 1661.CrossRefGoogle Scholar
Pfirsoh, D. & Sudan, R. N. 1970 Int. Centre for Theoretical Phys. Trieste, Internal Rep. IC 7097.Google Scholar
Rogister, A. 1970 ESRIN Internal Note 69.Google Scholar
Rogiater, A. & Dobrowolny, M. 1970 Phys. Rev. Lett. 25, 1082.CrossRefGoogle Scholar
Washimi, H. & Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar