Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T15:29:59.410Z Has data issue: false hasContentIssue false

Nonlinear surface Alfvén waves

Published online by Cambridge University Press:  13 March 2009

N. F. Cramer
Affiliation:
School of Physics, The University of Sydney, N.S.W. 2006, Australia

Abstract

The problem of nonlinear surface Alfvén waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schrödinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agranovich, V. M. & Chernyak, V. Ya. 1982 Solid State Commun. 44, 1309.CrossRefGoogle Scholar
Cramer, N. F. & Donnelly, I. J. 1983 Plasma Phys. 25, 703.CrossRefGoogle Scholar
Ghosh, S. & Papadopoulos, K. 1987 Phys. Fluids, 30, 1371.CrossRefGoogle Scholar
Grozev, D. & Shivarova, A. 1984 J. Plasma Phys. 31, 177.CrossRefGoogle Scholar
Grozev, D., Shivarova, A. & Boardman, A. D. 1987 J. Plasma Phys. 38, 427.CrossRefGoogle Scholar
Merzljakov, E. G. & Ruderman, M. S. 1985 Solar Phys. 95, 51.CrossRefGoogle Scholar
Merzljakov, E. G. & Ruderman, M. S. 1986a Solar Phys. 103, 259.CrossRefGoogle Scholar
Merzljakov, E. G. & Ruderman, M. S. 1986b Solar Phys. 105, 265.CrossRefGoogle Scholar
Mio, K., Ogino, T., Minami, K. & Takeda, S. 1976 J. Phys. Soc. Japan, 41, 265.CrossRefGoogle Scholar
Mjølhus, E. 1976 J. Plasma Phys. 16, 321.CrossRefGoogle Scholar
Ovenden, C. R., Shah, H. A. & Schwartz, S. J. 1983 J. Geophys. Res. 88, 6095.CrossRefGoogle Scholar
Roberts, B. 1981 Solar Phys. 69, 27.CrossRefGoogle Scholar
Roberts, B. 1985 Phys. Fluids, 28, 3280.CrossRefGoogle Scholar
Roberts, B. & Mangeney, A. 1982 Mon. Not. R. Astron. Soc. 198, 7P.CrossRefGoogle Scholar
Ruderman, M. S. 1988 Plasma Phys. Contr. Fusion, 30, 1117.CrossRefGoogle Scholar
Sahyouni, W., Zhelyazkov, I. & Nenovski, P. 1988 Solar Phys. 115, 17.CrossRefGoogle Scholar
Spangler, S. R. & Sheerin, J. P. 1982 J. Plasma Phys. 27, 193.CrossRefGoogle Scholar
Tsurutani, B. T., Richardson, I. G., Thorne, R. M., Butler, W., Smith, E. J., Cowley, S. W. H., Gary, S. P., Akasofu, S.-I. & Zwickl, R. D. 1985 J. Geophys. Res. 90, 259.Google Scholar
Wentzel, D. G. 1979 Astrophys. J. 227, 319.CrossRefGoogle Scholar
Wolfram, S. 1988 Mathematica™ A System for Doing Mathematics by Computer. Addison-Wesley.Google Scholar