Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T13:55:42.007Z Has data issue: false hasContentIssue false

Nonlinear structure of ion-acoustic solitary waves in a relativistic degenerate electron–positron–ion plasma

Published online by Cambridge University Press:  24 November 2011

A. RASHEED
Affiliation:
Department of Physics, G.C. University, Lahore 54000, Pakistan ([email protected]) Salam Chair in Physics, G.C. University, Lahore 54000, Pakistan
N. L. TSINTSADZE
Affiliation:
Department of Plasma Physics, E. Andronikashvili Institute of Physics, Tbilisi, Georgia
G. MURTAZA
Affiliation:
Salam Chair in Physics, G.C. University, Lahore 54000, Pakistan
R. CHAUDHARY
Affiliation:
Department of Physics, G.C. University, Lahore 54000, Pakistan ([email protected])

Abstract

Arbitrary amplitude and small amplitude ion-acoustic solitary waves (IASWs) have been investigated in a relativistic, collisionless, unmagnetized, and degenerate dense electron–positron–ion plasma. The arbitrary amplitude IASWs have been studied by using the Sagdeev-type pseudo-potential approach. Along with approximate solution, the exact amplitude solitary structure has also been studied numerically. The electrons and positrons are assumed to follow the corresponding Fermi distribution function and the ions are described by the hydrodynamic equations. A new dispersion relation for the ion-acoustic wave has been derived for the relativistic Thomas–Fermi plasma. An energy balance-like equation involving the Sagdeev-type pseudo-potential has been investigated and it has been shown that the concentration of plasma particles has significant effect on the permitted Mach number range of IASWs. Also, it has been pointed out that the only compressional supersonic IASWs can propagate in the relativistic Thomas–Fermi plasma. The present work would be helpful to understand the excitation of the nonlinear ion-acoustic waves in a degenerate plasma, such as in superdense white dwarfs and in the cores of massive planets.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Tandberg-Husen, E. and Emslie, A. G. 1988 The Physics of Solar Flares. Cambridge, UK: Cambridge Univiversity Press, pp. 124.Google Scholar
[2]Abdelsalam, U. M., Moslem, W. M. and Shukla, P. K. 2008 Phys. Lett. A 372, 4057CrossRefGoogle Scholar
[3]Michel, F. C. 1982 Rev. Mod. Phys. 1, 54.Google Scholar
[4]Orosz, J. R., Remillard, R. A., Bailyn, C. D. and McClintock, J. E. 1997 Astrophysics. J. Lett. L83, 478.Google Scholar
[5]Goldreich, P. and Julian, W. H. 1969 Astrophys. J. 157, 869.CrossRefGoogle Scholar
[6]Daniel, J. and Tajima, T. 1998 Astrophys. J. 498, 296.CrossRefGoogle Scholar
[7]Tsintsadze, N. L., Rasheed, A., Shah, H. A. and Murtaza, G. 2009 Phys. Plasmas 16, 112307.CrossRefGoogle Scholar
[8]Misner, W., Thorne, K. S. and Wheeler, J. A. 1980 Gravitation. San Francisco, CA: W. H. Freeman, pp. 764.Google Scholar
[9]Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Phys. Rev. Lett. 81, 4887.CrossRefGoogle Scholar
[10]Shapiro, S. L. and Teukolsky, S. A. 1983 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects. New York: Wiley Interscience, pp. 84.CrossRefGoogle Scholar
[11]Landau, L. D. and Lifshitz, E. M. 1998 Statistical Physics. Oxford, UK: Butterworth-Heinemann, pp. 166.Google Scholar
[12]Zel'dovich, Ya. B. and Raizer, Yu. P. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. London: Acadmic Press, pp. 220.Google Scholar
[13]Girifalco, L. A. 2000 Statistical Physics of Solids. Oxford, UK: Oxford University Press, pp. 155.Google Scholar
[14]Chandrasekhar, S., Mon. Not. R. Astron. Soc. 170, 405 (1935).Google Scholar
[15]Shukla, P. K., Tsintsadze, N. L. and Tsintsadze, L. N. 1993 Phys. Fluids B 5, 233.CrossRefGoogle Scholar
[16]Mamun, A. A. and Shukla, P. K. 2010 Phys. Plasmas 17, 104504.CrossRefGoogle Scholar
[17]Tsintsadze, L. N. 1992 Astrophys. Space Sci. 191, 151.CrossRefGoogle Scholar
[18]Berezhiani, V. I., Tsintsadze, L. N. and Shukla, P. K. 1992 J. Plasma Phys. 48, 139.CrossRefGoogle Scholar
[19]Tsintsadze, L. N. and Shukla, P. K. 1994 Phys. Lett. A. 187, 67.CrossRefGoogle Scholar
[20]Tsintsadze, L. N. and Berezhiani, V. I. 1993 Sov. Plasma Phys. Rep. 19, 258.Google Scholar
[21]Tsintsadze, L. N. 1994 Phys. Scripta 50, 783.CrossRefGoogle Scholar
[22]Kartal, S., Tsintsadze, L. N. and Berezhiani, V. I. 1996 Phys. Rev. E. 53, 4225.Google Scholar
[23]Lontano, M., Bulanov, S., Koga, J., Passoni, M. and Tajima, T. 2002 Phys. Plasmas 9, 2562.CrossRefGoogle Scholar
[24]Dubinov, A. E. and Sazonkin, M. A. 2009 Plasma Phys. Rep. 35, 14.CrossRefGoogle Scholar
[25]Popel, S. I., Vladimirov, S. V. and Shukla, P. K. 1995 Phys. Plasmas 2, 716.CrossRefGoogle Scholar
[26]EI-Shamy, E. F., Moslem, W. M. and Shukla, P. K. 2009 Phys. Lett. A 374, 290.CrossRefGoogle Scholar
[27]Tsintsadze, L. N., Nishikawa, K., Tajima, T. and Mendonca, J. T. 1999 Phys. Rev. E. 60, 7435.Google Scholar
[28]Mushtaq, A. and Shah, H. A. 2004 Phys. Plasmas 12, 012301.CrossRefGoogle Scholar
[29]Tsintsadze, L. N. 1995 Phys. Plasmas 2, 4462.CrossRefGoogle Scholar
[30]Moslema, W. M., Kourakis, I., Shukla, P. K. and Schlickeiser, R. 2007 Phys. Plasmas 14, 102901.CrossRefGoogle Scholar
[31]Dubinov, A. E., Dubinova, I. D. and Gordienk, V. A. 2006 Phys. Plasmas 13, 082111.CrossRefGoogle Scholar
[32]Mofiz, U. A. 2007 Phys. Plasmas 14, 112906.CrossRefGoogle Scholar
[33]Kalejahi, A. E., Mehdipoor, M. and Moghanjoughi, M. A. 2009 Phys. Plasmas 16, 052309.CrossRefGoogle Scholar
[34]Shah, H. A., Qureshi, M. N. S. and Tsintsadze, N. L. 2010 Phys. Plasmas 17, 032312.CrossRefGoogle Scholar
[35]Tsintsadze, N. L. and Tsintsadze, L. N. 2009 Europhys. Lett. 88, 35001.CrossRefGoogle Scholar
[36]Tsintsadze, L. N. and Tsintsadze, N. L. 2010 J. Plasma Phys. 76 (1–6), 403408.CrossRefGoogle Scholar
[37]Mamun, A. A. and Shukla, P. K. 2011 EPL 94, 65002.CrossRefGoogle Scholar
[38]Rasheed, A., Murtaza, G. and Tsintsadze, N. L. 2010 Phys. Rev. E. 62, 016403.Google Scholar
[39]Chen, F. F. 1984 Introduction to Plasma Physics and Controlled Fusion. New York: Plenum Press, pp. 301.CrossRefGoogle Scholar