Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T04:42:53.172Z Has data issue: false hasContentIssue false

Nonlinear self-interaction of plasma electromagnetic pulses propagating obliquely to a very strong ambient magnetic field

Published online by Cambridge University Press:  13 March 2009

Ronald E. Kates
Affiliation:
Institut für Theoretische Physik und Sternwarte, Universität Kiel, 2300 Kiel, Germany
D. J. Kaup
Affiliation:
Clarkson University, Institute for Nonlinear Studies, Potsdam, New York 13699-5815, U.S.A.

Abstract

We study nonlinear self-interactions including modulational instability in the case of a plane electromagnetic pulse propagating through a magnetized cold plasma at an arbitrary oblique angle to the external magnetic field. For intended applications to pulsar magnetospheres, the magnetic field is so large that both the electron- and ion-cyclotron frequencies are enormous compared with the plasma frequency or the frequency ω of the wave itself. The plasma is assumed to contain two singly charged species, either electrons and positrons or electrons and ions. (No approximation is made with respect to the mass ratio.) We restrict ourselves to the case eE0/mω ≪ 1 (i.e. the wave amplitude E0 excites the electrons to weakly, but not fully, relativistic velocities). We consider a pulse whose linear polarization is in the plane of the wave vector and the magnetic field. (The orthogonal polarization is purely electromagnetic, and induces no motion along magnetic field lines.) The pulse is assumed to be modulated along the direction of the group velocity vector. We show, using a self-consistent multiple-scales solution, that the envelope obeys the nonlinear Schrödinger equation, and from the coefficients of this equation we derive the conditions for modulational instability. Computation of the nonlinear coefficients requires detailed consideration of ponderomotive, relativistic and harmonic effects, all of which, in the ‘weakly relativistic’ case considered here, enter at the same order in the approximation scheme. Unlike the case of propagation parallel to a strong magnetic field, in oblique propagation we find a wide parameter range for modulational instability and soliton formation on time scales appropriate for pulsar micropulses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arons, J. & Scharlemann, E. 1979 Astrophys. J. 231, 854.CrossRefGoogle Scholar
Asseo, E., Pelletier, G. & Sol, H. 1990 Mon. Not. R. Astron. Soc. 247, 529.Google Scholar
Benny, D. J. & Newell, A. C. 1967 J. Math, and Phys. 46, 133.CrossRefGoogle Scholar
Chian, A. & Kennel, C. 1983 Astrophys. Space Sci. 97, 9.CrossRefGoogle Scholar
Gil, J. 1986 Astrophys. J. 308, 691.CrossRefGoogle Scholar
Karpman, V. & Krushkal, E. 1969 Soviet Phys. JETP 28, 277.Google Scholar
Kates, R. & Kaup, D. 1989 a J. Plasma Phys. 42, 507 (paper I).CrossRefGoogle Scholar
Kates, R. & Kaup, D. 1989 b J. Plasma Phys. 42, 521 (paper II).CrossRefGoogle Scholar
Kates, R. & Kaup, D. 1991 J. Plasma Phys. 46, 85 (paper III).CrossRefGoogle Scholar
Kates, R. & Kaup, D. 1992 J. Plasma Phys. 48, 119 (paper IV).CrossRefGoogle Scholar
Kazbegi, A., Machabeli, G. & Melikidze, G. 1991 Mon. Not. R. Astron. Soc. 253, 377.CrossRefGoogle Scholar
Mikhailovskii, A., Onishchenko, O. & Smolyakov, A. 1985 Soviet Astron. Lett. 11, 78.Google Scholar
Newell, A. C. 1974 Lectures in Applied Mathematics, vol. 15 (ed. Newell, A. C.), p. 157 AMS.Google Scholar
Rickett, B. 1975 Astrophys. J. 197, 185.CrossRefGoogle Scholar
Ruderman, M. & Sutherland, P. 1975 Astrophys. J. 196, 51.CrossRefGoogle Scholar
Smirnova, T. 1988 Soviet Astron. Lett. 14, 20.Google Scholar
Smirnova, T., Soglasnov, V., Popov, V. & Novikov, A. 1986 Soviet Astron 30, 51.Google Scholar
Shukla, P. & Stenflo, L. 1984 Phys. Rev. A 30, 2110.CrossRefGoogle Scholar
Shukla, P. & Yu, M. 1986 Physica Scripta 34, 169.CrossRefGoogle Scholar
Stenflo, L. 1990 Physica Scripta T 30, 166.CrossRefGoogle Scholar
Stenflo, L. 1991 J. Plasma Phys. 45, 355.CrossRefGoogle Scholar
Stenflo, L. & Shukla, P. 1988 J. Geophys. Res. 93, 4115.CrossRefGoogle Scholar
Stenflo, L. & Shukla, P. 1989 Phys. Rev. B 39, 12941.CrossRefGoogle Scholar
Stenflo, L., Shukla, P. & Yu, M. 1985 Astrophys. Space Sci. 117, 303.CrossRefGoogle Scholar