Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T04:37:59.388Z Has data issue: false hasContentIssue false

Nonlinear radio-frequency response of a non-uniform plasma slab–condenser system with realistic density and velocity profiles

Published online by Cambridge University Press:  13 March 2009

R. Ballieu
Affiliation:
Laboratorium Voor Plasmafysika, Associatie ‘Euratom-Belgische Staat’, Koninklijke Militaire School, 1040 Brussels
A. M. Messiaen
Affiliation:
Laboratorium Voor Plasmafysika, Associatie ‘Euratom-Belgische Staat’, Koninklijke Militaire School, 1040 Brussels
P. E. Vandenplas
Affiliation:
Laboratorium Voor Plasmafysika, Associatie ‘Euratom-Belgische Staat’, Koninklijke Militaire School, 1040 Brussels

Abstract

The nonlinear behaviour of a realistic one-dimensional bounded plasma (specifically, the classical plasma slab–condenser system) is computed by an iterative perturbation method. The results indicate, somewhat unexpectedly, that the influence of the r.f. field on the static density profile and on the resonance spectrum is much smaller than would have been inferred from a previous analysis of an unbounded plasma. However, this approach is inherently limited by the fact that, even for not too high r.f. fields, the electron density perturbations can become of the same order of magnitude as the static density in the tenuous plasma sheath near the wall. The resonance curves obtained with this sophisticated model show quite remarkable agreement with existing experimental data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandrov, A. F., Kuzovnikov, A. A., Nikolov, N. & Rukhadze, A. A. 1969 Nuclear Fusion, 9, 137.Google Scholar
Ballieu, R., Messiaen, M. A & Vandenplas, P. E. 1972 L.P.P., Ecole Royal Militaire, Brussels, Rep. 53.Google Scholar
Booth, H. A., Self, S. A. & Sherby-Harvie, R. B. 1958 J. Electr. Contr. 4, 434.CrossRefGoogle Scholar
Forrest, J. R. & Franklin, R. N. 1968 J. Phys. D1 (2), 1357.Google Scholar
Gaponov, A. V. & Miller, M. E. 1958 Soviet Phys. JETP, 7, 168.Google Scholar
Gildenburg, V. B. 1964 Soviet Phys. JETP, 19, 1456.Google Scholar
Goldan, P. D. & Yadlowsky, E. J. 1971 Phys. Fluids, 14, 1990.CrossRefGoogle Scholar
Kino, G. S. & Shaw, E. K. 1966 Phys. Fluids, 9, 587.Google Scholar
Messiaen, A. M. & Vandenplas, P. E. 1964 Physica, 30, 2309.CrossRefGoogle Scholar
Messiaen, A. M. & Vandenplas, P. E. 1967 Plasma Phys. 9, 511.Google Scholar
Nottingham, W. B. 1939 Phys. Rev. 55, 203.Google Scholar
Self, S. A. 1963 Phys. Fluids, 6, 1762.CrossRefGoogle Scholar
Self, S. A. 1965 J. Appl. Phys. 36, 456.CrossRefGoogle Scholar
Sever'yanov, G. V. V. 1971 Soviet Phys. Tech. Phys. 16, 392.Google Scholar
Tonks, L. & Langmuir, I. 1929 Phys. Rev. 34, 876.CrossRefGoogle Scholar
Vandenplas, P. E. & Messiaen, A. M. 1964 Plasma Phys. 6, 459.Google Scholar
Vandenplas, P. E. 1968 Electron Waves and Resonances in Bounded Plasmas. Interseience.Google Scholar