Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T06:34:02.287Z Has data issue: false hasContentIssue false

Nonlinear propagation of intense electromagnetic waves in a hot electron–positron plasma

Published online by Cambridge University Press:  17 August 2010

ROZINA CHAUDHARY
Affiliation:
Department of Physics, G. C. University, Lahore 54000, Pakistan
NODAR L. TSINTSADZE
Affiliation:
Department of Physics, G. C. University, Lahore 54000, Pakistan; E. Andronikashvili Institute of Physics, 0177 Tbilisi, Georgia
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected], [email protected])

Abstract

The creation and annihilation of relativistically hot electron–positron (EP) pair plasmas in the presence of intense electromagnetic (EM) waves, which are not in thermal equilibrium, are studied by formulating a new plasma particle distribution functions, which are valid for both relativistic temperatures and relativistic amplitudes of the EM waves. It is found that intense EM waves in a collisionless EP plasma damp via nonlinear Landau damping. Accounting for the latter, we have obtained relativistic kinetic nonlinear Schrödinger equation (NLSE) with local and non-local nonlinearities. The NLSE depicts nonlinear Landau damping rates for intense EM waves. The damping rates are examined for dense and tenuous pair plasmas. Furthermore, we have studied the modulational instabilities of intense EM waves in the presence of nonlinear Landau damping. Our results reveal a new class of the modulational instability that is triggered by the inverse Landau damping in a relativistically hot EP plasma. Finally, we discuss localization of intense EM waves due to relativistic electron and positron mass increase in a hot pair plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Tsintsadze, N. L. 1974 Phys. Lett. A 50, 33.CrossRefGoogle Scholar
[2]Tajima, T. and Dawson, J. M. 1979 Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
[3]Bingham, R., Mendonça, J. T. and Shukla, P. K. 2004 Plasma Phys. Control. Fusion 46, R1.CrossRefGoogle Scholar
[4]Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. 1986 Phys. Rep. 138, 1.CrossRefGoogle Scholar
[5]Fews, A. P., Norreys, P. A., Beg, F. N., Bell, A. R., Dangor, A. E., Danson, C. N., Lee, P. and Rose, S. J. 1994 Phys. Rev. Lett. 73, 1801.CrossRefGoogle Scholar
[6]Beg, F. N., Bell, A. R., Dangor, A. E., Danson, C. N., Fews, A. P. and Glinsky, M. E. 1997 Phys. Plasmas 4, 447.CrossRefGoogle Scholar
[7]Tsintsadze, L. N., Kunioki, M. and Kyoji, N. 1998 Plasma Phys. Control. Fusion 40, 1933.CrossRefGoogle Scholar
[8]Yamagiwa, M., Koga, J., Tsintsadze, L. N., Ueshima, Y. and Kishimoto, Y. 1999 Phys. Rev. E 60, 5987.CrossRefGoogle Scholar
[9]Ya, Z. and Novikov, I. D. 1981 Relativistic Astrophysics. Chicago: University of Chicago Press.Google Scholar
[10]Tsintsadze, L. N. 1995 Phys. Plasmas 2, 9462; Tsintsadze, L. N. and Kyoji, N. 1997 Phys. Plasmas 4, 841.CrossRefGoogle Scholar
[11]Shukla, P. K., Tsintsadze, N. L. and Tsintsadze, L. N. 1993 Phys. Fluids B 5, 233.CrossRefGoogle Scholar
[12]Tsintsadze, L. N. and Berezhiani, V. I. 1993 Plasma Phys. Rep. 19, 132.Google Scholar
[13]Mofiz, U. A., Tsintsadze, N. L. and Tsintsadze, L. N. 1995 Phys. Scr. 51, 390.CrossRefGoogle Scholar
[14]Tsintsadze, L. N. 1994 Phys. Scr. 50, 413; Kartal, S., Tsintsadze, L. N. and Berezhiani, V. I. 1996 Phys. Rev. E 53, 4225–4228.CrossRefGoogle Scholar
[15]Tsintsadze, L. N., Kanya, K. and Kyoji, N. 1997 Phys. Plasma 4, 911.CrossRefGoogle Scholar
[16]Tsintsadze, L. N., Dundua, T. V., Stenflo, L. and Shukla, P. K. 1997 Phys. Scr. 55, 741.CrossRefGoogle Scholar
[17]Tsintsadze, L. N., Chilashvili, M. G., Shukla, P. K. and Tsintsadze, N. L. 1997 Phys. Plasma 4, 3923.CrossRefGoogle Scholar
[18]Tsintsadze, L. N. 1991 Sov. J. Plasma Phys. 17, 872.Google Scholar
[19]Tajima, T. and Taniuti, T. 1990 Phys. Rev. A 42, 3587.CrossRefGoogle Scholar
[20]Mahajan, S. M., Shatashvili, N. L. and Berezhiani, V. I. 2009 Phys. Rev. E 80, 066404.CrossRefGoogle Scholar
[21]Gibson, G., Willard, C. J. and Lauer, E. J. 1960 Phys. Rev. Lett. 5, 141.CrossRefGoogle Scholar
[22]Boehmer, H., Adams, M. and Rynn, N. 1995 Phys. Plasmas 2, 4369.CrossRefGoogle Scholar
[23]Greaves, R. G., Tinkle, M. D. and Surko, C. M. 1994 Phys. Plasmas 1, 1439.CrossRefGoogle Scholar
[24]Surko, C. M., Leventhal, M. and Passner, A. 1989 Phys. Rev. Lett. 62, 901.CrossRefGoogle Scholar
[25]Mohri, A. et al. 1995 In: Elementary Processes in Dense Plasmas (ed. Ichimaru, S. and Ogata, S.). New York: Addison-wesley, pp. 447486.Google Scholar
[26]Greaves, R. G. and Surko, C. M. 1995 Phys. Rev. Lett. 75, 3846.CrossRefGoogle Scholar
[27]Schmidt, G. 1979 Physics of High Temperature Plasmas. New York: Academic Press.Google Scholar
[28]Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. New York: Academic Press, Ch. 8 and 14.Google Scholar
[29]Shatashvili, N. L. and Tsintsadze, N. L. 1982 Phys. Scr. T22, 511.CrossRefGoogle Scholar
[30]Shukla, P. K.Stenflo, L. and Fedele, R. 2003 Phys. Plasmas 10, 310.CrossRefGoogle Scholar
[31]Bell, A. R. and Kirk, J. G. 2008 Phys. Rev. Lett. 101, 200403.CrossRefGoogle Scholar
[32]Kompaneets, A. S. 1957 Sov. Phys. JETP 4, 730.Google Scholar
[33]Tsintsadze, N. L., Kunioki, M., Tsintsadze, L. N. and Kyoji, N. 2002 Phys. Plasmas 9, 4270.CrossRefGoogle Scholar
[34]Lontano, M., Bulanov, S. V., Koga, J., Passoni, M. and Tajima, T. 2002 Phys. Plasmas 9, 2562.CrossRefGoogle Scholar
[35]Tsintsadze, L. N., Kishimoto, Y., Callebaut, D. K. and Tsintsadze, N. L. 2007 Phys Rev. E 76, 016406.CrossRefGoogle Scholar
[36]Shukla, P. K. and Eliasson, B. 2005 Phys. Rev. Lett. 94, 065002; Shukla, P. K. and Eliasson, B. 2007 Phys. Rev. Lett. 99, 096401.CrossRefGoogle Scholar
[37]Alexandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principles of Plasmas Electrodynamics. New York: Heidelberg, Springer.CrossRefGoogle Scholar