Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T13:13:33.507Z Has data issue: false hasContentIssue false

Nonlinear propagation of dust ion-acoustic waves in a dusty quantum magnetoplasma

Published online by Cambridge University Press:  01 April 2008

AMAR P. MISRA
Affiliation:
High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata 700 032, India Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India ([email protected])
S. SAMANTA
Affiliation:
Department of Basic Science and Humanities, College of Engineering and Management, Kolaghat, West Medinipore 721 171, India
A. R. CHOWDHURY
Affiliation:
High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata 700 032, India

Abstract

A quantum magnetohydrodynamic model is used to investigate the nonlinear propagation of dust ion-acoustic waves in a three-component quantum plasma composed of electrons, positively charged ions and immobile charged dust grains. Using the standard reductive perturbation technique, a Korteweg–de Vries equation is derived containing the quantum statistical and diffraction effects. There exists a critical value of the non-dimensional parameter H, proportional to the quantum diffraction, beyond which the bright soliton propagation is not possible with positive phase velocity. The effects of obliqueness, charged dust impurity and external magnetic field as well as the quantum mechanical effects are investigated numerically on the profiles of the amplitude and width of the solitary waves.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Markowich, P. A., Ringhofer, C. A. and Schmeiser, C. 1990 Semiconductor Equations. Berlin: Springer.CrossRefGoogle Scholar
[2]Chabier, G., Douchin, F. and Potekhin, Y. 2002 J. Phys.: Condens. Matter 14, 9133.Google Scholar
[3]Jung, Y. F. 2001 Phys. Plasmas 8, 3842.CrossRefGoogle Scholar
[4]Opher, M., Silva, L. O., Danger, D. E., Decyk, V. K. and Dawson, J. M. 2001 Phys. Plasmas 8, 2454.CrossRefGoogle Scholar
[5]Kremp, D., Bornath, Th., Bonitz, M. and Schlanges, M. 1999 Phys. Rev. E 60, 4725.Google Scholar
[6]Hass, F., Manfredi, G. and Feix, M. 2000 Phys. Rev. E 62, 2763.Google Scholar
[7]Hass, F., Garcia, L. G., Goedert, J. and Manfredi, G. 2003 Phys. Plasmas 10, 3858.CrossRefGoogle Scholar
[8]Marklund, M. 2005 Phys. Plasmas 12, 082110.CrossRefGoogle Scholar
[9]Shukla, P. K. 2006 Phys. Lett. A 352, 242.CrossRefGoogle Scholar
[10]Misra, A. P. and Roy Chowdhury, A. 2006 Phys. Plasmas 13, 072305.CrossRefGoogle Scholar
[11]Misra, A. P. and Bhowmik, C. 2007 Nonplanar ion-acoustic waves in a quantum plasma. Phys. Lett. A doi: 10.1016/j.physleta.2007.04.066.CrossRefGoogle Scholar
[12]Ali, S. and Shukla, P. K. 2006 Phys. Plasmas 13, 022313.CrossRefGoogle Scholar
[13]Hass, F. 2005 Phys. Plasmas 12, 062117.CrossRefGoogle Scholar
[14]Misra, A. P. and Bhowmik, C. 2007 Phys. Plasmas 14, 012309.CrossRefGoogle Scholar
[15]Landau, L. D. and Lifshitz, E. M. 1998 Statistical Physics, Part 1. Oxford: Oxford University Press.Google Scholar
[16]Shukla, P. K. and Yu M, Y. 1978 J. Math. Phys. 19, 2506.CrossRefGoogle Scholar
[17]Yu, M. Y., Shukla, P. K. and Bujarbarua, S. 1980 Phys. Fluids 23, 2146.CrossRefGoogle Scholar