Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T18:12:48.278Z Has data issue: false hasContentIssue false

Nonlinear low-frequency structures in an electron–positron–ion plasma

Published online by Cambridge University Press:  20 March 2012

S. MOOLLA
Affiliation:
School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4000, South Africa ([email protected])
I. J. LAZARUS
Affiliation:
Department of Mathematics, Statistics and Physics, Durban University of Technology, Durban, 4000, South Africa
R. BHARUTHRAM
Affiliation:
Office of the Deputy Vice Chancellor, University of the Western Cape, Modderdam Road, Belville, 7535, South Africa

Abstract

Nonlinear ion cyclotron and ion-acoustic waves have been studied in an electron–positron–ion plasma. Using Boltzmann distributions for the electrons and positrons and fluid equations for the ions, a set of nonlinear equations in the rest frame of the propagating wave is derived and numerically solved for the electric field. A scan of parameter space reveals a range of solutions for the parallel electric field, from sinusoidal to sawtooth to highly spiky waveforms. The results are compared with satellite observations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Gurnett, D. A. and Frank, L. A. 1978 J. Geophys. Res. 83, 1447.CrossRefGoogle Scholar
[2]Gurnett, D. A. and Frank, L. A. 1977 J. Geophys. Res. 82, 1031.CrossRefGoogle Scholar
[3]Matsumoto, H., Kojima, H., Miyatake, T., Omura, Y., Okada, M. and Tsutsui, M. 1994 Geophys. Res. Lett. 21, 2915.CrossRefGoogle Scholar
[4]Mozer, F. S., Ergun, R. E., Temerin, M., Cattell, C., Dombeck, J. and Wygant, J. 1997 Phys. Rev. Lett. 79, 1281.CrossRefGoogle Scholar
[5]Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delroy, G. T., Peria, W., Chaston, C. C., Temerin, M., Elphic, R., Strangeway, R.et al. 1998 Geophys. Res. Lett. 25, 2025.CrossRefGoogle Scholar
[6]Reddy, R. V., Lakhina, G. S., Singh, N. and Bharuthram, R. 2002 Nonlinear Proc. Geophys. 9, 25.CrossRefGoogle Scholar
[7]Bharuthram, R., Reddy, R. V., Lakhina, G. S. and Singh, N. 2002 Physica Scripta T98, 137.CrossRefGoogle Scholar
[8]Moolla, S., Bharuthram, R., Singh, S. and Lakhina, G. S. 2003 PRAMANA - J. Phys. 61, 1.CrossRefGoogle Scholar
[9]Reddy, R. V., Singh, S. V., Lakhina, G. S. and Bharuthram, R. 2006 Earth Planets Space 58, 1227.CrossRefGoogle Scholar
[10]Moolla, S., Bharuthram, R., Singh, S., Lakhina, G. S. and Reddy, R. V. 2007 J. Geophys. Res. 112, A07214.CrossRefGoogle Scholar
[11]Kojima, H., Matsumoto, H., Miyatake, T., Nagano, I., Fujita, A., Frank, L. A., Mukai, T., Paterson, W. R., Saito, Y. and Machida, S. 1994 Geophys. Res. Lett. 21, 2919.CrossRefGoogle Scholar
[12]Moolla, S., Bharuthram, R., Singh, S., Lakhina, G. S. and Reddy, R. V. 2010 Phys. Plasmas 17, 1.CrossRefGoogle Scholar
[13]Ghosh, S. and Bharuthram, R. 2008 Astrophys. Space Sci. 314, 121.CrossRefGoogle Scholar
[14]Ghosh, S. and Bharuthram, R. 2011 Astrophys. Space Sci. 331, 163.CrossRefGoogle Scholar
[15]Abdelsalam, U. M., Moslem, W. M. and Shukla, P. K. 2008 Phys. Lett. A 372, 4057.CrossRefGoogle Scholar
[16]Dubinov, A. E. and Sazonkin, M. A. 2009 Plasma Phys. Rep. 35, 14.CrossRefGoogle Scholar
[17]Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 1996 NUMERICAL RECIPES in Fortran 90 - The Art of Parallel Scientific Computing. Vol. 2. New York: Cambridge University Press.Google Scholar
[18]Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.CrossRefGoogle Scholar
[19]Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin: Springer, p. 202.Google Scholar