Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T15:07:21.768Z Has data issue: false hasContentIssue false

Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic co-ordinates

Published online by Cambridge University Press:  13 March 2009

A. Brizard
Affiliation:
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, U.S.A.

Abstract

A gyrokinetic formalism using magnetic co-ordinates is used to derive self-consistent, nonlinear Maxwell–Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic co-ordinates is an important feature of this work since it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the action-variational Lie perturbation method of Cary & Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfvén perturbations in slab geometry or electrostatic perturbations in toroidal geometry. In this present work fully electromagnetic perturbations in toroidal geometry are considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnol'd, V. I. 1978 Mathematical Methods of Classical Mechanics. Springer.CrossRefGoogle Scholar
Bernstein, I. B. & Catto, P. J. 1985 Phys. Fluids, 28, 1342.CrossRefGoogle Scholar
Boozer, A. H. & White, R. B. 1982 Phys. Rev. Lett. 49, 786.CrossRefGoogle Scholar
Brizard, A. 1989 Phys. Fluids B, (To be published).Google Scholar
Cary, J. R. & Littlejohn, R. G. 1983 Ann. Phys. (NY) 151, 1.Google Scholar
Dragt, A. J. & Finn, J. M. 1976 J. Math. Phys. 17, 2215.CrossRefGoogle Scholar
Dubin, D. H. E., Krommes, J. A., Oberman, C. & Lee, W. W. 1983 Phys. Fluids, 26, 3524.CrossRefGoogle Scholar
Frieman, E. A. & Chen, L. 1982 Phys. Fluids, 25, 502.CrossRefGoogle Scholar
Hagan, W. K. & Frieman, E. A. 1985 Phys. Fluids, 28, 2641.Google Scholar
Hahm, T. S. 1988 Phys. Fluids, 31, 2670.Google Scholar
Hahm, T. S., Lee, W. W. & Bhizard, A. 1988 Phys. Fluids, 31, 1940.CrossRefGoogle Scholar
Hasegawa, A. & Wakatani, M. 1983 Phys. Fluids, 26, 2770.Google Scholar
Hazeltine, R. D., Hsu, C. T. & Morrison, P. H. 1987 Phys. Fluids, 30, 3204.CrossRefGoogle Scholar
Lee, W. W. 1983 Phys. Fluids, 26, 556.Google Scholar
Lee, W. W. 1987 J. Comp. Phys. 72, 243.CrossRefGoogle Scholar
Lee, W. W., Krommes, J. A., Oberman, C. & Smith, R. A. 1984 Phys. Fluids, 27, 2652.CrossRefGoogle Scholar
Lee, W. W. & Tang, W. M. 1988 Phys. Fluids, 31, 612.Google Scholar
Littlejohn, R. G. 1979 J. Math. Phys. 20, 2445.Google Scholar
Littlejohn, R. G. 1981 Phys. Fluids, 24, 1730.CrossRefGoogle Scholar
Littlejohn, R. G. 1982 a J. Math. Phys. 23, 742.Google Scholar
Littlejohn, R. G. 1982 b Physica Scripta, T2/1, 119.Google Scholar
Littlejohn, R. G. 1983 J. Plasma Phys. 29, 111.Google Scholar
Littlejohn, R. G. 1985 Phys. Fluids, 28, 2015.Google Scholar
Newcomb, W. A. 1959 Phys. Fluids, 2, 362.CrossRefGoogle Scholar
Northrop, T. G. & Rome, J. A. 1978 Phys. Fluids, 21, 384.CrossRefGoogle Scholar
White, R. B., Boozer, A. H. & Hay, R. 1982 Phys. Fluids, 25, 575.CrossRefGoogle Scholar
White, R. B. & Chance, M. S. 1984 Phys. Fluids, 27, 2455.Google Scholar
Yang, S.-C. & Choi, D.-I. 1985 Phys. Lett. 108 A, 25.CrossRefGoogle Scholar