Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T01:34:34.063Z Has data issue: false hasContentIssue false

Nonlinear evolution of a wave packet propagating along a hot magnetoplasma column

Published online by Cambridge University Press:  13 March 2009

B. Ghosh
Affiliation:
Department of Physics, R. K. Mission Vidyamandir, Belur Math, Howrah – 711 202, India
K. P. Das
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Calcutta – 700 009, India.

Abstract

The method of multiple scales is used to derive a nonlinear Schrödinger equation, which describes the nonlinear evolution of electron plasma ‘slow waves’ propagating along a hot cylindrical plasma column, surrounded by a dielectric medium and immersed in an essentially infinite axial magnetic field. The temperature is included as well as mobile ion effects for ail possible modes of propagation along the magnetic field. From this equation the condition for modulational instability for a uniform plasma wave train is determined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bevc, V. & Everhart, T. E. 1962 J. Electron. Control. 13, 185.CrossRefGoogle Scholar
Blennerhassett, P. J. 1980 Phil. Trans. R. Soc. A298, 451.Google Scholar
Camus, M. & Lemezec, J. 1963 Proceedings of Symposium on Eleclromagnetic Theory and Antennas, Copenhagen, part I, p. 323. Macmillan.Google Scholar
Das, K. P. & Sihi, S. 1979 Plasma Phys. 21, 861.CrossRefGoogle Scholar
Das, K. P. & Sluijter, F. W. 1981 Plasma Phys. 23, 121.CrossRefGoogle Scholar
Davey, A. & Stewartson, K. 1974 Proc. R. Soc. A388, 101.Google Scholar
Dysthe, K. B. & Pecseli, H. L. 1977 Plasma Phys. 19, 931.CrossRefGoogle Scholar
Franklin, R. N., Hamberger, S. M., Lampis, G. & Smith, G. J. 1971 Phys. Lett. 36A, 473.CrossRefGoogle Scholar
Franklin, R. N., Hamberger, S. M., Lampis, G. & Smith, G. J. 1975 Proc. R. Soc. A347, 1.Google Scholar
Ghosh, B. & Das, K. P. 1985 Plasma Phys. 27, 969.Google Scholar
Granatstein, V. L., Schlesinger, S. P. & Vigants, A. 1963 IEEE Trans. Antennas Propag. 11, 489.CrossRefGoogle Scholar
Hasegawa, A. 1977 Plasma Instabilities and Nonlinear Effects. Springer.Google Scholar
Kadomtsev, B. B. 1981 Plasma Physics. Mir, Moscow.Google Scholar
Larsen, J. M. & Crawford, F. W. 1979 a Int. J. Electron. 46, 577.CrossRefGoogle Scholar
Larsen, J. M. & Crawford, F. W. 1979 b Int. J. Electron. 47, 317.CrossRefGoogle Scholar
Larsen, J. M. & Crawford, F. W. 1979 c Int. J. Electron. 47, 335.CrossRefGoogle Scholar
Laval, G., Pellat, R. & Perulli, M. 1969 Plasma Phys. 11, 579.CrossRefGoogle Scholar
Lindgren, T. 1983 J. Plasma Phys. 29, 255.CrossRefGoogle Scholar
Mateev, E. & Zhelyazkov, I. 1978 Physica Scripta, 18, 346.CrossRefGoogle Scholar
Pécseli, H. L. & Rasmussen, J. J. 1980 Plasma Phys. 11, 579.Google Scholar
Rasmussen, J. J. 1977 Risø-M-1911.Google Scholar
Rasmussen, J. J. 1978 Plasma Phys. 20, 997.CrossRefGoogle Scholar
Rypdal, K. 1981 Physica Scripta, 23, 277.CrossRefGoogle Scholar
Zakharov, V. E. & Shabat, A. B. 1972 Soviet Phys. JETP, 34, 62.Google Scholar