Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T14:58:05.370Z Has data issue: false hasContentIssue false

Nonlinear bound on unstable fluctuation level in low-density non-neutral plasma

Published online by Cambridge University Press:  13 March 2009

Ronald C. Davidson
Affiliation:
Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Kang T. Tsang
Affiliation:
Science Applications International Corporation, Boulder, Colorado 80302

Abstract

A cold-fluid model is used to describe the nonlinear evolutions of low-density non-neutral plasma immersed in a strong axial magnetic field. It is assumed that there is no axial dependence, and that the electron fluid moves with the usual E × B drift velocity. Use is made of global (spatially averaged) conservation constraints satisfied by the continuity and Poisson equations to obtain a nonlinear bound on the unstable fluctuation level for a general initial density profile.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Briggs, R. J., Daugherty, J. D. & Levy, R. H. 1970 Phys. Fluids, 13, 421.CrossRefGoogle Scholar
Buneman, O. 1961 Cross-Field Microwave Devices. Academic.Google Scholar
Buneman, O., Levy, R. H. & Linson, L. M. 1966 J. Appl. Phys. 37, 3203.CrossRefGoogle Scholar
Chernin, D. & Lau, Y. Y. 1984 Phys. Fluids, 27, 2319.CrossRefGoogle Scholar
Davidson, R. C. 1974 Theory of Nonneutral Plasmas. Benjamin.Google Scholar
Davidson, R. C. 1984 Phys. Fluids, 27, 1804.CrossRefGoogle Scholar
Davidson, R. C. 1985 a Phys. Fluids, 28, 1937.CrossRefGoogle Scholar
Davidson, R. C. 1985 b J. Plasma Phys. 33, 157.CrossRefGoogle Scholar
Davidson, R. C. & Tsai, S. T. 1973 J. Plasma Phys. 9, 101.CrossRefGoogle Scholar
Davidson, R. C. & Tsang, K. 1984 Phys. Rev. A 29, 488.CrossRefGoogle Scholar
Davidson, R. C., Tsang, K. & Swegle, J. 1984 Phys. Fluids, 27, 2332.CrossRefGoogle Scholar
Fowler, T. K. 1963 J. Math. Phys. 4, 559.CrossRefGoogle Scholar
Fowler, T. K. 1968 Advances in Plasma Physics (ed. Simon, A. and Thompson, W. B.), vol. 1, p. 201. Interscience.Google Scholar
Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. 1985 Phys. Reports, 123, 1.CrossRefGoogle Scholar
Kapetanakos, C. A., Hammer, D. A., Striffler, C. D. & Davidson, R. C. 1973 Phys. Rev. Lett. 30, 1303.CrossRefGoogle Scholar
Kyhl, R. L. & Webster, H. F. 1956 IRE Trans. Electron Devices, 3, 172.CrossRefGoogle Scholar
Lau, Y. Y. 1984 Phys. Rev. Lett. 53, 395.CrossRefGoogle Scholar
Levy, R. H. 1965 Phys. Fluids, 8, 1288.CrossRefGoogle Scholar
Liao, S. Y. 1980 Microwave Devices and Circuits. Prentice-Hall.Google Scholar
MacFarlane, G. C. & Hay, H. G. 1950 Proc. Roy. Soc. B 63, 409.Google Scholar
Prestwich, K. R., Hasti, D. E., Miller, R. B. & Sharpe, A. W. 1983 IEEE Trans. Nucl. Sci. NS-30, 3155.CrossRefGoogle Scholar
Swegle, J. 1983 Phys. Fluids, 26, 1670.CrossRefGoogle Scholar
Swegle, J. & Ott, E. 1981 a Phys. Fluids, 24, 1821.CrossRefGoogle Scholar
Swegle, J. & Ott, E. 1981 b Phys. Rev. Lett. 46, 929.CrossRefGoogle Scholar
VanDevender, J. P. et al. 1985 Nucl. Fus. Suppl. 3, 59.Google Scholar