Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T14:05:12.706Z Has data issue: false hasContentIssue false

Non-extensive effects on the characteristics of dust-acoustic solitary waves in magnetized dusty plasma with two-temperature isothermal ions

Published online by Cambridge University Press:  09 April 2014

Akbar Sabetkar
Affiliation:
Laser Laboratory., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
Davoud Dorranian*
Affiliation:
Laser Laboratory., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*
Email address for correspondence: [email protected]

Abstract

The nonlinear Zakharov–Kuznetsov and the modified Zakharov–Kuznetsov equations are derived for dust-acoustic solitary waves (DASWs) in a magnetized four-component dusty plasma system comprising negatively charged cold dust, non-extensive electrons, and two-temperature thermal ions using standard reductive perturbation method. The combined effects of electron non-extensivity, strength of magnetic field, and its obliqueness on the DASWs profile are analyzed. Different ranges of non-extensive q-parameter are considered. Our results show that solitary waves, that their amplitude and width of which depend sensitively on the q-non-extensive parameter, can exist. Due to electron non-extensivity, our dusty plasma model can admit positive potential as well as negative potential solitons. The strength of magnetic field has no effect on the amplitude of solitary waves, whereas its obliqueness affects both amplitude and width of the solitary waves structure. Results show that the amplitude of soliton increases with increasing the velocity of soltion. For any magnitude of q there is an extremum for the direction of the magnetic field at which the width of soliton is maximum.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, S., Martinez, S., Pennini, F. and Plastino, A. 2001 Phys. Lett. A 281, 126.CrossRefGoogle Scholar
Amour, R. and Tribeche, M. 2010 Phys. Plasmas 17, 063702.Google Scholar
Bains, A. S., Tribeche, M. and Gill, T. S. 2011a Phys. Plasmas 18, 022108.CrossRefGoogle Scholar
Bains, A. S., Tribeche, M. and Gill, T. S. 2011b Phys. Plasmas 18, 104503.CrossRefGoogle Scholar
Baluku, T. K., Hellberg, M. A. and Mace, R. L. 2008 Phys. Plasmas 15, 033701.Google Scholar
Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Phys. Plasmas 2, 3563.Google Scholar
Cairns, R. A., Mamun, A. A., Bingham, R., Bostrom, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Geophys. Res. Lett. 22, 2709, doi:10.1029/95GL02781.Google Scholar
Chaudhuri, T. K., Khan, M., Gupta, M. R. and Ghosh, S. 2007 Phys. Plasmas 14, 103706.Google Scholar
Dorranian, D. and Sabetkar, A. 2012 Phys. Plasmas 19, 013702.CrossRefGoogle Scholar
El-Taibany, W. F., Wadati, M. and Sabry, R. 2007 Phys. Plasmas 14, 032304.CrossRefGoogle Scholar
Eslami, P., Mottaghizadeh, M. and Pakzad, H. R. 2011a Phys. Scr. 84, 015504.Google Scholar
Eslami, P., Mottaghizadeh, M. and Pakzad, H. R. 2011b Phys. Plasmas 18, 072305.CrossRefGoogle Scholar
Eslami, P., Mottaghizadeh, M. and Pakzad, H. R. 2011c Phys. Plasmas 18, 102303.Google Scholar
Eslami, P., Mottaghizadeh, M. and Pakzad, H. R. 2012 Can. J. Phys. 90, 525530.CrossRefGoogle Scholar
Feron, C. and Hjorth, J. 2008 Phys. Rev. E 77, 022106.Google Scholar
Futaana, Y., Machida, S., Saito, Y., Matsuoka, A. and Hayakawa, H. 2003 J. Geophys. Res. 108, 1025, doi:10.1029/2002JA009366.Google Scholar
Gervino, G., Lavagno, A. and Pigato, D. 2012 Central Euro. J. Phys. 10 (3), 594.Google Scholar
Ghosh, S. and Bharuthram, R. 2008 Astrophys. Space Sci. 314, 121.CrossRefGoogle Scholar
Ghosh, S., Bharuthram, R., Khan, M. and Gupta, M. R. 2004 Phys. Plasmas 11, 3602.Google Scholar
Goertz, C. K. 1989 Rev. Geophys. 27, 271, doi:10.1029/RG027i002p00271.Google Scholar
Horanyi, M. 1996 Annu. Rev. Astron. Astrophys. 34, 383.CrossRefGoogle Scholar
Kaniadakis, G. 2001 Phys. Lett. A 28, 283.Google Scholar
Lavagno, A. and Pigato, D. 2011 Euro. Phys. J. A 47, 52.Google Scholar
Leubner, M. P. 2008 Nonlinear Process. Geophys. 15, 531.Google Scholar
Lundin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., Dubinin, E. M., Barabash, S. W., Liede, I. and Koskinen, H. 1989 Nature 341, 609.Google Scholar
Mace, R. L. and Hellberg, M. A. 2001 Phys. Plasmas 8, 2649.CrossRefGoogle Scholar
Mamun, A. A. 2008 Phys. Lett. A 372, 686.CrossRefGoogle Scholar
Mendis, D. A. and Rosenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.Google Scholar
Pakzad, H. R. 2009a Phys. Lett. A 373, 847.Google Scholar
Pakzad, H. R. 2009b Astrophys. Space Sci. 326, 77.Google Scholar
Plastino, A. R. and Plastino, A. 1993 Phys. Lett. A 174, 384.Google Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Renyi, A. 1955 Acta Math. Hung. 6, 285.Google Scholar
Sahu, B. 2011 Phys. Plasmas 18, 062308.CrossRefGoogle Scholar
Sahu, B. 2012 Astrophys. Space Sci. 338, 251.CrossRefGoogle Scholar
Sahu, B. and Roychoudhury, R. 2006 Phys. Plasmas 13, 072302.Google Scholar
Sahu, B. and Tribeche, M. 2012 Astrophys. Space Sci. 338, 259.CrossRefGoogle Scholar
Sakanaka, P. H. and Shukla, P. K. 2000 Phys. Scr. T84, 181.Google Scholar
Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsa, N. L. 1986 Phys. Rep. 135, 1.CrossRefGoogle Scholar
Silva, R., Plastino, A. R. and Lima, J. A. S. 1998 Phys. Lett. A 249, 401.Google Scholar
Sultana, S., Kourakis, I., Saini, N. S. and Hellberg, M. A. 2010 Phys. Plasmas 17, 032310.Google Scholar
Tribeche, M. and Amour, R. 2011 Commun. Nonlinear Simulat. 16, 3533.Google Scholar
Tribeche, M., Djebarni, L. and Amour, R. 2010 Phys. Plasmas 17, 042114.Google Scholar
Tribeche, M. and Merriche, A. 2011 Phys. Plasmas 18, 034502.CrossRefGoogle Scholar
Tsallis, C. 1988 J. Stat. Phys. 52, 479.Google Scholar
Verheest, F. 1992 Planet. Space Sci. 40, 1.Google Scholar
Verheest, F. 2000 Waves in Dusty Space Plasmas. Dordrecht, Netherlands: Kluwer.Google Scholar
Wada, T. 2002 Phys. Lett. A 297, 334.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1996 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Xue, J. K. and Lang, H. 2004 Chin. Phys. 13, 0060.Google Scholar
Yu, M. Y. and Luo, H. 2008 Phys. Plasmas 15, 024504.Google Scholar