Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T06:07:13.743Z Has data issue: false hasContentIssue false

Non-diffusive corrections to the long-scale behaviour of ensembles of turbulent magnetic lines: application of the functional method

Published online by Cambridge University Press:  13 March 2009

F. Spineanu
Affiliation:
Association EURATOM—CEA sur la Fusion, DRFC, Centre d'Études de Cadarache, F- 13108 Saint-PauI-lez-Durance Cedex, France
M. Vlad
Affiliation:
Association EURATOM—CEA sur la Fusion, DRFC, Centre d'Études de Cadarache, F- 13108 Saint-PauI-lez-Durance Cedex, France
J. H. Misguich
Affiliation:
Association EURATOM—CEA sur la Fusion, DRFC, Centre d'Études de Cadarache, F- 13108 Saint-PauI-lez-Durance Cedex, France

Abstract

The transverse spreading of magnetic field lines in a turbulent plasma is investigated analytically in order to obtain a statistical characterization at large spatial scales. We develop a functional-integral method that allows us to calculate in a systematic way statistical averages of physical quantities that depend on the fluctuating field. The known magnetic diffusion coefficient for the shear-free case is corrected with a term arising from the assumption of a finite transverse correlation length. For the case with magnetic shear the functional method provides the appropriate framework for a perturbative approach based on diagram series.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abers, E. S. & Lee, B. W. 1973 Phys. Rep. 9, 1.CrossRefGoogle Scholar
Balescu, R., Misguich, J. H. & Nakach, R. 1992 Diffusion of charged particles in a stochastic magnetic field. Report EUR-CEA-FC 1463.Google Scholar
Corrsin, S. 1959 Atmospheric Diffusion and Air Pollution (ed. Frenkel, F. N. & Sheppard, P. A.), p. 161. Academic.Google Scholar
Crew, G. B. & Chang, T. 1988 Phys. Fluids 31, 3425.CrossRefGoogle Scholar
Hirschman, S. P. & Molvig, K. 1979 Phys. Rev. Lett. 42, 648.CrossRefGoogle Scholar
Jensen, R. J. 1981 J. Stat. Mech. 25, 183.Google Scholar
Kadomtsev, B. B. & Poguste, O. P. 1979 Nucl. Fusion Suppl. 1, 649.Google Scholar
Krommes, J. A. 1984 Basic Plasma Physics, vol. II (ed. Galeev, A. A. & Sudan, R. N.), 183. Elsevier.Google Scholar
Krommes, J. A., Oberman, C. & Kleva, R. G. 1983 J. Plasma Phys. 30, 11.CrossRefGoogle Scholar
Martin, P. C., Siggia, E. D. & Rose, H. A. 1973 Phys. Rev. A8, 423.CrossRefGoogle Scholar
Misguich, J. H. & Balescu, R. 1977 Plasma Phys. 19, 611.CrossRefGoogle Scholar
Misguich, J. H. & Balescu, R. 1982 Plasma Phys. 24, 289.CrossRefGoogle Scholar
Rechester, A. B. & Rosenbluth, M. N. 1978 Phys. Rev. Lett. 40, 38.CrossRefGoogle Scholar
Spineanu, F. & Vlad, M. 1988 Phys. Lett. A 133, 319.CrossRefGoogle Scholar