Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T14:18:14.347Z Has data issue: false hasContentIssue false

A new method of determining the transport coefficients for high pressure arcs from experimental data

Published online by Cambridge University Press:  13 March 2009

L. B. Kapp
Affiliation:
Gas Discharge Section, Marchwood Engineering Laboratories, Central Electricity Generating Board, Marchwood, Southampton
P. H. Richards
Affiliation:
Gas Discharge Section, Marchwood Engineering Laboratories, Central Electricity Generating Board, Marchwood, Southampton

Abstract

The problem is to determine the electrical and thermal conductivities of high pressure are plasmas from measurements of the current—voltage characteristics of the are and a single radial temperature profile. A new numerical method is described together with the corresponding computer program. The latter is applied to some recent measurements on wall-stabilized nitrogen ares, covering the temperature range 4500—11,000 °K, for which radiation can be neglected, and the results are compared with those of other workers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. E. 1967 Phys. Fluids 10, 4. 894.CrossRefGoogle Scholar
Bakanovich, G. I. & Grechikhin, L. I. 1965 Teplofizika Vysokikh Temperature 3, 4. 520.Google Scholar
Busz, G. & Finkelnberg, W. 1954 Z. Phys. 139, 212.CrossRefGoogle Scholar
Corliss, C. H. & Bozmann, W. R. 1962 Experimental Transition Probabilities of Spectral Lines of Seventy Elements. N.B.S. Monograph 53.CrossRefGoogle Scholar
Drawin, H. W. & Felenbox, P. 1965 Data for Plasmas in L.T.E. Paris: Gauthier-Villars.Google Scholar
Edels, H. & Fenlon, F. H. 1965 Br. J. App. Phys. 16, 217.CrossRefGoogle Scholar
George, D. W. & Richards, P. H. 1968 Brit. J. Appl. Phys. (J. Phys. D), 1, 1171.CrossRefGoogle Scholar
Gozna, C. F. & Richards, P. H. 1967 Br. J. Appl. Phys. 18, 1205.CrossRefGoogle Scholar
King, L. A. 1965 E.R.A. Rep. G/XT 152.Google Scholar
Maecker, H. 1959 Proc. IVth Int. Conf. on Ionisation Phenomena in Gases, Uppsala, I, p. 378.Google Scholar
Maecker, H. 1960 Z. Phys. 158, 392.CrossRefGoogle Scholar
Maecker, H. 1967 Private communication.Google Scholar
Monterde-Garicia, A. 1964 Z. Phys. 181, 317.CrossRefGoogle Scholar
Motschmann, H. 1966 Z. Phys. 191, 10.CrossRefGoogle Scholar
Pearce, W. J. 1960 Optical Spectrometric Measurements of High Temperature, p. 125, ed. Dickermann, P.. Univ. of Chicago Press.Google Scholar
Richards, P. H. 1968 Ph.D. Thesis. Bath University of Technology.Google Scholar
Schmitz, G. & Patt, H. J. 1962 Z. Phys. 167, 163.CrossRefGoogle Scholar
Schmitz, D. & Patt, H. J. 1963 Z. Phys. 171, 449.CrossRefGoogle Scholar
Schmitz, G. & Uhlenbusch, J. 1963 Z. Naturforsch. 18 a, 772.CrossRefGoogle Scholar
Uhlenbusch, J. 1964 Z. Phys. 179, 347.CrossRefGoogle Scholar
De Vos, J. C. 1954 Physica 20, 690.Google Scholar