Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T00:58:23.975Z Has data issue: false hasContentIssue false

Negative temperature states for the two-dimensional guiding-centre plasma

Published online by Cambridge University Press:  13 March 2009

Glenn Joyce
Affiliation:
Department of Physics and Astronomy, The University of Iowa
David Montgomery
Affiliation:
Department of Physics and Astronomy, The University of Iowa

Abstract

Theoretical development and numerical simulation of the two-dimensional electrostatic guiding-centre plasma with positive total interaction energy are presented. Equilibrium statistical mechanics predicts that no spatially homogeneous thermal equilibrium state exists for this system. This non-existence is associated with the phenomenon of ‘negative temperatures’. Quasi-stable, spatially inhomogeneous states are shown to form, and are characterized by macroscopic spatially-separated vortex structures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, G. K. 1953 Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Christiansen, J. P. 1969 Proc. 3rd Conf. on Computer Simulation of Plasma, Stanford, California.Google Scholar
Christiansen, J. P. 1971 Culham Laboratory Rep. CLM-P282Google Scholar
Deem, G. S. & Zabusky, N. J. 1971 Phys. Rev. Letters, 27, 396.CrossRefGoogle Scholar
Deutsch, C. & Lavaud, M. 1972 Phys. Letters, A 39, 253.CrossRefGoogle Scholar
Gartenhaus, S. 1963 Phys. Fluids, 6, 451.CrossRefGoogle Scholar
Joyce, G. & Montgomery, D. 1972 Phys. Letters, A 39, 371.CrossRefGoogle Scholar
Khinchin, A. 1949 Mathematical Foundations of Statistical Mechanics. Dover.Google Scholar
Knorr, G. 1968 Phys. Letters, A 28, 166.CrossRefGoogle Scholar
Landau, L. & Lifshitz, E. M. 1969 Statistical Physics. Addison-Wesley.Google Scholar
May, R. M. 1967 Phys. Letters, A 25, 282.CrossRefGoogle Scholar
Montgomery, D. 1972 a Proc. Les Houches Summer School of Theoretical Physics. Gordon and Breach.Google Scholar
Montgomery, D. 1972 b Phys. Letters, A 39, 7.CrossRefGoogle Scholar
Montgomery, D. & Gorman, D. 1962 Phys. Fluids, 5, 947.CrossRefGoogle Scholar
Onsager, L. 1949 Nuovo Cimento Suppl. 6(9) 2, 279.CrossRefGoogle Scholar
Salzberg, A. & Prager, S. 1963 J. Chem. Phys. 38, 2587.CrossRefGoogle Scholar
Taylor, J. B. 1972 Phys. Letters, A 40, 1.CrossRefGoogle Scholar
Taylor, J. B. & McNamara, B. 1971 Phys. Fluids, 14, 1492.CrossRefGoogle Scholar
Ter, Haar D. 1966 Elements of Thermostatistics (2nd edn.). Holt, Rinehart andWinston.Google Scholar
Vahala, G. & Montgomery, D. 1971 J. Plasma Phys. 6, 425.CrossRefGoogle Scholar
Van Kampen, N. G. 1964 Phys. Rev. A 135, 362.CrossRefGoogle Scholar