Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T15:28:58.261Z Has data issue: false hasContentIssue false

A necessary condition for omnigenity in stellarators

Published online by Cambridge University Press:  13 March 2009

Walter Dommaschk
Affiliation:
Max-Planck Institut für Plasmaphysik, Euratom Association D-85748 Garching, Germany

Abstract

A lower bound for the total variation Bmax/Bmin of the field strength B on a toroidal vacuum magnetic surface with finite twist (rotational transform) of the field is given as a necessary (not sufficient) condition for the field lines to be geodesics on it. If such a surface existed, it would be omnigenous with respect to the local gradient-B and centrifugal guiding-centre drift approximation, which means that the normal components of these drift velocities would be zero. It is found that the lower bound on Bmax/Bmin depends on the maximum of – (r/B) ∂B/∂r within the surface. Here r is the distance from the origin of the torus. The lower bound is large if this maximum is small, and vice versa. For some more recent stellarator configurations the condition is found to be satisfied at outer magnetic surfaces. It is obtained without the use of expansion techniques, under the assumption that there is a nested system of magnetic surfaces within the omnigenous one.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beidler, C., Grieger, G., Herrnegger, F., Harmeyer, E., Kisslinger, J., Lotz, W., Maassberg, H., Merkel, P., Nührenberg, J., Rau, F., Sapper, J., Sardei, F., Ruben, S., Schlüter, A. &Wobig, H. 1990 Fusion Technol. 17, 148.CrossRefGoogle Scholar
Bernardin, M. P., Moses, R. W. &Tataronis, J. A. 1986 Phys. Fluids 29, 2605.CrossRefGoogle Scholar
Biermann, L. &Schlüter, A. 1957 Mitt. Max-Planck Ges. 3, 146.Google Scholar
Boozer, A. H. 1983 Phys. Fluids 26, 496.CrossRefGoogle Scholar
Brossmann, U., Dommaschk, W., Herrnegger, F., Grieger, G., Kisslinger, J., Lotz, W., Nührenberg, J., Rau, F., Renner, H., Ringler, H., Sapper, J., Schlüter, A. &Wobig, H. 1983 Proceedings of 9th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Baltimore 1982, vol. 3, p. 141. International Atomic Energy Agency.Google Scholar
Catto, P. J. &Hazeltine, R. D. 1981 Phys. Fluids 24, 1663.Google Scholar
Channell, P. J. 1986 Phys. Fluids 29, 161.CrossRefGoogle Scholar
Dommaschk, W. 1978 Report IPP 0/38.Google Scholar
Dommaschk, W. 1981 Z. Naturforsch. 36a, 251.CrossRefGoogle Scholar
Dommaschk, W. 1982 Z. Naturforsch. 37a, 867.Google Scholar
Dommaschk, W. 1985 IPP Annual Report, p. 138.Google Scholar
Dommaschk, W. 1986 Comput. Phys. Commun. 40, 203.CrossRefGoogle Scholar
Dommaschk, W., Herrnegger, F. &Schlüter, A. 1991 a Proceedings of 18th European Conference on Controlled Fusion and Plasma Physics, Berlin (ed. Bachmann, P. & Robinson, D. C.), ECA, 15C, part 2, p. 121. European Physical Society.Google Scholar
Dommaschk, W., Herrnegger, F. &Schluter, A. 1991 b Proceedings of 4th Workshop W 7-X Schloβ Ringberg, Germany (ed. Junker, J.) Report IPP 2/313, p. 38.Google Scholar
D'haeseleer, W. D., Hitchon, W. N. G., Callen, J. D. &Shoghet, J. L. 1991 Flux Coordinates and Magnetic Field Structure. A Guide to a Fundamental Tool of Plasma Theory. Springer.Google Scholar
Garren, D. A. &Boozer, A. H. 1991 Phys. Fluids B 3, 2805, 2822.CrossRefGoogle Scholar
Grieger, G., Beidler, C., Harmeyer, E., Lotz, W., Kisslinger, J., Merkel, P., Nührenberg, J., Rau, F., Strumberger, E. &Wobig, H. 1992 Fusion Technol. 21, 1767.CrossRefGoogle Scholar
Hall, L. S. &McNamara, B. 1975 Phys. Fluids 18, 552.CrossRefGoogle Scholar
Herrnegger, F. &Dommaschk, W. 1993 Current Research on Fusion, Laboratory and Astrophysical Plasmas, Pichl, Austria, February 28-March 2, 1991 (ed. Kuhn, S., Schöpf, K. & Schrittwieser, ), p. 69. World Scientific.Google Scholar
Korn, G. A. &Korn, T. M. 1968 Mathematical Handbook for Scientists and Engineers, 17.312. McGraw-Hill.Google Scholar
Lortz, D. &Nührenberg, J. 1981 Proceedings of Sherwood Meeting, Austin, Texas, 3B48.Google Scholar
Martensen, E. 1968 Potentialtheorie, p. 161. Teubner.Google Scholar
Meyer, F. &Schmidt, H. U. 1958 Z. Naturforsch, 13a, 1005.CrossRefGoogle Scholar
Nührenberg, J. &Zille, R. 1988 Phys. Lett. 129A, 113.CrossRefGoogle Scholar
Palumbo, D. 1968 Nuovo Cim. 53B, 507.CrossRefGoogle Scholar
Palumbo, D. 1986 Atti Acc. Sc. Lett., Palermo (19831984) vol. IV, parte I, p. 107. Palermo Presso L'Accademia.Google Scholar
Palumbo, D. 1990 Proceedings of the Joint Varenna–Lausanne International Workshop, Varenna, 27–31 August 1990, p. 693.Google Scholar
Palumbo, D. &Balzano, M. 1986 Atti Acc. Sc. Lett., Palermo (19831984), vol. IV, parte I, p. 129. Palermo Presso L'Accademia.Google Scholar
Pfirsch, D. &Schlüter, A. 1962 Report MPI PA/7/62.Google Scholar
Schlüter, A. 1983 Nucl. Instrum. Meth. 207, 139.CrossRefGoogle Scholar
Schmidt, G. 1966 Physics of High Temperature Plasmas, p. 16. Academic.Google Scholar
Wobig, H. 1988 Report IPP 2/297, 11.Google Scholar