Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T06:26:00.200Z Has data issue: false hasContentIssue false

Natural fluctuations in un-magnetized and magnetized plasmas

Published online by Cambridge University Press:  12 February 2015

P. Tolias*
Affiliation:
Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
S. Ratynskaia
Affiliation:
Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
A. Panarese
Affiliation:
Istituto di Metodologie Inorganiche e dei Plasmi - CNR, Bari, Italy
S. Longo
Affiliation:
Istituto di Metodologie Inorganiche e dei Plasmi - CNR, Bari, Italy Department of Chemistry, University of Bari, Bari, Italy
U. de Angelis
Affiliation:
INFN Sezione di Napoli, Naples, Italy
*
Email address for correspondence: [email protected]

Abstract

There are still open issues within the fluctuation theory of plasmas, in view of the difficulty of formulating adequate theoretical approaches and solving the related equations in particular regimes. A promising alternative approach is direct microphysical modeling based on first principles, as successfully applied to neutral rarefied fluids. Within this approach, the equations of motion of a large ensemble of charged particles are solved numerically while correlations are obtained from statistical analysis of the ensemble at different times. As a first step, in this work we validate the data analysis technique adopted in this numerical scheme for the case of an electron ensemble neglecting Coulomb interactions. The simulation results are compared with the analytical theory of ‘natural’ fluctuations for both un-magnetized and magnetized plasmas. For the latter, the derivations for arbitrary average distribution functions are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. and Stepanov, K. N. 1975a Plasma Electrodynamics Volume 1: Linear Theory. Oxford: Pergamon Press Ltd.Google Scholar
Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. and Stepanov, K. N. 1975b Plasma Electrodynamics Volume 2: Non-Linear Theory and Fluctuations. Oxford: Pergamon Press Ltd.Google Scholar
Aleksandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. New York: Springer.CrossRefGoogle Scholar
Birdsall, C. K. and Langdon, A. B. 1991 Plasma Physics Via Computer Simulation. Bristol: Adam Hilger.CrossRefGoogle Scholar
Bruno, D., Capitelli, M., Longo, S. and Minelli, P. 2006 Monte Carlo simulation of light scattering spectra in atomic gases. Chem. Phys. Lett. 422, 571.CrossRefGoogle Scholar
de Angelis, U., Tolias, P. and Ratynskaia, S. 2012 Effects of dust particles in plasma kinetics: Ion dynamics time scales. Phys. Plasmas 19, 073 701.CrossRefGoogle Scholar
Froula, D. H., Glenzer, S. H., Luhmann, N. C. and Sheffield, J. 2011 Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques. New York: Academic Press.Google Scholar
Hansen, J.-P. and McDonald, I. R. 2006 Theory of Simple Liquids. New York: Academic Press.Google Scholar
Hirst, D. M. 1990 A Computational Approach to Chemistry. Oxford: Blackwell Science, Inc.Google Scholar
Hutchinson, I. H. 1987 Principles of Plasma Diagnostics. Cambridge: Cambridge University Press.Google Scholar
Ichimaru, S. and Yakimenko, I. P. 1973 Transition probability approach to the theory of plasmas. Phys. Scr. 7, 198.CrossRefGoogle Scholar
Klimontovich, Yu. L. 1967 The Statistical Theory of Non-Equilibrium Processes in a Plasma. Oxford: Pergamon Press Ltd.Google Scholar
Klimontovich, Yu. L. and Silin, V. P. 1962 Theory of fluctuations of the particle distributions in a plasma. JETP 15, 199.Google Scholar
Klimontovich, Yu. L., Wilhelmsson, H., Yakimenko, I. P. and Zagorodny, A. G. 1989 Statistical theory of plasma-molecular systems. Phys. Rep. 175, 263.CrossRefGoogle Scholar
Ratynskaia, S.et al. 2010 Plasma fluctuation spectra as a diagnostic tool for submicron dust. Phys. Plasmas 17, 043 703.CrossRefGoogle Scholar
Ratynskaia, S., Dilecce, G. and Tolias, P. 2014 BABE – a brush cathode discharge for thermal fluctuation measurements. J. Plasma Phys. http://dx.doi.org/10.1017/S0022377814001160CrossRefGoogle Scholar
Sitenko, A. G. 1967 Electromagnetic Fluctuations in Plasma. New York: Academic Press.CrossRefGoogle Scholar
Sitenko, A. G. and Gurin, A. A. 1966 Effect of particle collisions on plasma fluctuations. JETP 22, 1089.Google Scholar
Sitenko, A. G. and Yakimenko, I. P. 1974 Advances in Plasma Physics: Method of Inversion of the Fluctuation-Dissipation Ratio in Plasma Theory, Vol. 5. New York: John Wiley and Sons.Google Scholar
Sosenko, P. P. 1997 Collective Fluctuations in Magnetized Plasma: Transition Probability Approach. Gothenburg: Chalmers University of Technology.Google Scholar
Sosenko, P. P. and Decyk, V. K. 1993 Microscopic description of magnetized plasma: quasiparticle concept. Phys. Scr. 47, 258.CrossRefGoogle Scholar
Tolias, P., Ratynskaia, S. and de Angelis, U. 2012 Spectra of ion density and potential fluctuations in weakly ionized plasmas in the presence of dust grains. Phys. Rev. E 85, 026 408.CrossRefGoogle ScholarPubMed
Tsytovich, V. N. 1989 Description of collective processes and fluctuations in classical and quantum plasmas. Phys. Usp. 32, 911.CrossRefGoogle Scholar
Tsytovich, V. N. 1995 Lectures on Non-Linear Plasma Kinetics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Tsytovich, V. N. 2013 On the physical interpretation of Thomson scattering in a plasma. Phys. Usp. 56, 180.CrossRefGoogle Scholar
Tsytovich, V. N. and de Angelis, U. 1999 Kinetic theory of dusty plasmas. I. General approach. Phys. Plasmas 6, 1093.CrossRefGoogle Scholar
Watson, G. N. 1966 A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge University Press.Google Scholar
Yakimenko, I. P. and Zagorodny, A. G. 1974 Transition probabilities, correlation functions and dielectric permittivity tensors for semibounded and bounded nonequilibrium plasmas. Phys. Scr. 10, 244.CrossRefGoogle Scholar