Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T05:51:34.490Z Has data issue: false hasContentIssue false

Monte Carlo method and High Performance Computing for solving Fokker–Planck equation of minority plasma particles

Published online by Cambridge University Press:  20 March 2015

E. Hirvijoki*
Affiliation:
Department of Applied Physics, Chalmers University of Technology, Gothenburg, 41296, Sweden Department of Applied Physics, Aalto University, Espoo, 02015, Finland
T. Kurki-Suonio
Affiliation:
Department of Applied Physics, Chalmers University of Technology, Gothenburg, 41296, Sweden Department of Applied Physics, Aalto University, Espoo, 02015, Finland
S. Äkäslompolo
Affiliation:
Department of Applied Physics, Aalto University, Espoo, 02015, Finland
J. Varje
Affiliation:
Department of Applied Physics, Aalto University, Espoo, 02015, Finland
T. Koskela
Affiliation:
Department of Applied Physics, Aalto University, Espoo, 02015, Finland
J. Miettunen
Affiliation:
Department of Applied Physics, Aalto University, Espoo, 02015, Finland
*
Email address for correspondence: [email protected]

Abstract

This paper explains how to obtain the distribution function of minority ions in tokamak plasmas using the Monte Carlo method. Since the emphasis is on energetic ions, the guiding-center transformation is outlined, including also the transformation of the collision operator. Even within the guiding-center formalism, the fast particle simulations can still be very CPU intensive and, therefore, we introduce the reader also to the world of high-performance computing. The paper is concluded with a few examples where the presented method has been applied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham, R. and Marsden, J. E. 1978 Foundations of Mechanics. AMS Chelsea Pub./American Mathematical Society. American Mathematical Society, Providence, Rhode Island.Google Scholar
Alfvén, H. 1940 On the Motion of A Charged particle in a Magnetic Field. Arkiv Mat. Astr. Fysik Band 27 A (22), 1.Google Scholar
Arnold, V. I. 1989 Mathematical Methods of Classical Mechanics, 2nd ed.Springer, Springer-Verlag, New York.CrossRefGoogle Scholar
Brizard, A. J. 1995 Nonlinear gyrokinetic vlasov equation for toroidally rotating axisymmetric tokamaks. Phys. Plasmas 2 (2), 459471.CrossRefGoogle Scholar
Brizard, A. J. 2004 A guiding-center fokker–planck collision operator for nonuniform magnetic fields. Phys. Plasmas 11 (9), 44294438.CrossRefGoogle Scholar
Cary, J. R. and Brizard, A. J. 2009 Hamiltonian theory of guiding-center motion. Rev. Mod. Phys. 81, 693738.CrossRefGoogle Scholar
Decker, J., Peysson, Y., Brizard, A. J. and Duthoit, F.-X. 2010 Orbit-averaged guiding-center fokker–planck operator for numerical applications. Phys. Plasmas 17 (11), 112513.CrossRefGoogle Scholar
Flanders, H. 1989 Differential Forms with Applications to the Physical Sciences. Dover Publications, Manufactured in the United States by Courier Corporation 66169509.Google Scholar
Hakola, A.et al., the ASDEX Upgrade Team & JET-EFDA Contributors 2013a Global migration of impurities in tokamaks. Plasma Phys. Control. Fusion 55, 124029.CrossRefGoogle Scholar
Hakola, A.et al. and the ASDEX Upgrade Team 2013b Global migration of 13C impurities in high-density L-mode plasmas in ASDEX Upgrade. J. Nuclear Mater. 438 (0), S694S697, Proc. 20th Int. Conf. on Plasma-Surface Interactions in Controlled Fusion Devices.CrossRefGoogle Scholar
Hakola, A.et al. and the ASDEX Upgrade Team 2010 Migration and deposition of 13C in the full-tungsten ASDEX Upgrade tokamak. Plasma Phys. Control. Fusion 52, 065006.CrossRefGoogle Scholar
Helander, P. and Sigmar, D. J. 2005 Collisional transport in magnetized plasmas. In: Collisional Transport in Magnetized Plasmas, Vol. 1. Cambridge, UK: Cambridge University Press.Google Scholar
Hirvijoki, E. 2014 Theory and models for monte carlo simulations of minority particle populations in tokamak plasmas. PhD thesis, Aalto University, School of Science.CrossRefGoogle Scholar
Hirvijoki, E., Asunta, O., Koskela, T., Kurki-Suonio, T., Miettunen, J., Sipilä, S., Snicker, A. and Äkäslompolo, S. 2014 ASCOT: solving the kinetic equation of minority particle species in tokamak plasmas. Comput. Phys. Commun. 185 (4), 13101321.CrossRefGoogle Scholar
Hirvijoki, E., Brizard, A., Snicker, A. and Kurki-Suonio, T. 2013 Monte Carlo implementation of a guiding-center fokker-planck kinetic equation. Phys. Plasmas 20 (9), 092505.CrossRefGoogle Scholar
Hirvijoki, E., Snicker, A., Korpilo, T., Lauber, P., Poli, E., Schneller, M. and Kurki-Suonio, T. 2012 Alfvén eigenmodes and neoclassical tearing modes for orbit-following implementations. Comput. Phys. Commun. 183 (12), 25892593.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics: A Statistical Approach. W. A. Benjamin, Inc., Advanced Book Program, Reading, Mass.Google Scholar
Kramer, G. J.et al. 2011 Fast-ion effects during test blanket module simulation experiments in DIII-D. Nuclear Fusion 51 (10), 103029.CrossRefGoogle Scholar
Kramer, G. J.et al. 2013 Simulation of localized fast-ion heat loads in test blanket module simulation experiments on DIII-D. Nuclear Fusion 53 (12), 123018.CrossRefGoogle Scholar
Littlejohn, R. G. 1979 A guiding center Hamiltonian: a new approach. J. Math. Phys. 20 (12), 24452458.CrossRefGoogle Scholar
Littlejohn, R. G. 1982 Hamiltonian perturbation theory in noncanonical coordinates. J. Math. Phys. 23 (5), 742747.CrossRefGoogle Scholar
Littlejohn, R. G. 1983 Variational principles of guiding centre motion. J. Plasma Phys. 29, 111125.CrossRefGoogle Scholar
Miettunen, J., Kurki-Suonio, T., Makkonen, T., Groth, M., Hakola, A., Hirvijoki, E., Krieger, K., Likonen, J., Äkäslompolo, S. and the ASDEX Upgrade Team 2012 The effect of non-axisymmetric wall geometry on 13C transport in ASDEX Upgrade. Nuclear Fusion 52 (3), 032001.CrossRefGoogle Scholar
Northrop, T. G. 1961 The guiding center approximation to charged particle motion. Ann. Phys. 15 (1), 79101.CrossRefGoogle Scholar
Northrop, T. G. 1963 Adiabatic charged-particle motion. Rev. Geophys. 1 (3), 283304.CrossRefGoogle Scholar
Øksendal, B. 2003 Stochastic Differential Equations: An Introduction with Applications. Springer.CrossRefGoogle Scholar
Rosenbluth, M.l N., MacDonald, W. M. and Judd, D. L. 1957 Fokker-planck equation for an inverse-square force. Phys. Rev. 107, 16.CrossRefGoogle Scholar