Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T16:03:44.559Z Has data issue: false hasContentIssue false

Monte Carlo Collision method for low temperature plasma simulation

Published online by Cambridge University Press:  27 August 2014

Francesco Taccogna*
Affiliation:
Istituto di Metodologie Inorganiche e di Plasmi, Consiglio Nazionale delle Ricerche, Bari, 70126, Italy
*
Email address for correspondence: [email protected]

Abstract

This work shows the basic foundation of the particle-based representation of low temperature plasma description. In particular, the Monte Carlo Collision (MCC) recipe has been described for the case of electron-atom and ion-atom collisions. The model has been applied to the problem of plasma plume expansion from an electric Hall-effect type thruster. The presence of low energy secondary electrons from electron-atom ionization on the electron energy distribution function (EEDF) have been identified in the first 3 mm from the exit plane where, due to the azimuthal heating the ionization continues to play an important role. In addition, low energy charge-exchange ions from ion-atom electron transfer collisions are evident in the ion energy distribution functions (IEDF) 1 m from the exit plane.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Birdsall, C. K. and Langdon, A. B. 1985 Plasma Physics Via Computer Simulation. New York: McGraw-Hill.Google Scholar
Dawson, J. M. 1983 Particle simulation of plasmas. Rev. Mod. Phys. 55 (2), 403447.Google Scholar
Donko, Z. 2011 Particle simulation methods for studies of low-pressure plasma sources. Plasma Sources Sci. Technol. 20, 024001.CrossRefGoogle Scholar
Gryzinski, M. 1965 Classical theory of atomic collisione. I. Theory of inelastic collisions. Phys. Rev. A 138 (2), 336358.CrossRefGoogle Scholar
Hockney, R. W. and Eastwood, J. W. 1989 Computer Simulation Using Particles. New York: IOP, Bristol.Google Scholar
Khrabrov, A. V. and Kaganovich, I. D. 2012 Electron scattering in helium for Monte Carlo simulations. Phys. Plasmas 19, 093511.CrossRefGoogle Scholar
Kim, H. C., Iza, F., Yang, S. S., Radmilovic-Radjenovic, M. and Lee, J. K. 2005 Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects. J. Phys. D: Appl. Phys. 38, R283R301.Google Scholar
King, L. B. and Gallimore, A. D. 2004 Ion-energy diagnostics in an SPT-100 plume from thrust axis to backflow. J. Prop. and Power 20 (2), 228242.CrossRefGoogle Scholar
Longo, S. 2000 Monte Carlo models of electron and ion transport in non-equilibrium plasmas. Plasma Sources Sci. Technol. 9, 468476.Google Scholar
Longo, S. 2006 Monte Carlo simulation of charged species kinetics in weakly ionized gases. Plasma Sources Sci. Technol. 15, S181S188.Google Scholar
Nanbu, K. 2000 Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and gases. IEEE Trans. Plasma Sci. 28 (3), 971990.CrossRefGoogle Scholar
Nanbu, K. and Kitatani, Y. 1995 An ion-neutral species collision model for particle simulation of glow discharge. J. Phys. D: Appl. Phys. 28, 324330.CrossRefGoogle Scholar
Sakai, Y. 2002 Database in low temperature plasma modeling. Appl. Surf. Sci. 192, 327338.Google Scholar
Scott Miller, J., Pullins, S. H., Levandier, D. J., Chiu, Yu-H. and Dressler, R. A. 2002 Xenon charge exchange cross sections for electrostatic thruster models. J. Appl. Phys. 91 (3), 984991.Google Scholar
Szabo, J. J. Jr. 2001 Fully kinetic numerical modelling of a plasma thruster, PhD Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston New England, USA.Google Scholar
Taccogna, F., Longo, S. and Capitelli, M. 2002 Particle-in-cell with test-particle Monte Carlo (PIC/TPMC) simulation of SPT-100 exhaust plumes. J. Space and Rock. 39 (3), 409419.CrossRefGoogle Scholar
Taccogna, F., Longo, S. and Capitelli, M. 2004 Very-near-field plume simulation of a stationary plasma thrusters. Europ. Phys. J., Appl. Phys. 28, 113122.Google Scholar
Taccogna, F., Longo, S. and Capitelli, M. 2005 Plasma sheaths in Hall discharge. Phys. Plasmas 12, 093506.Google Scholar
Taccogna, F., Longo, S., Capitelli, M. and Schneider, R. 2007 Particle-in-cell model of stationary plasma Thruster. Contrib. Plasma Phys. 47 (8–9), 635656.CrossRefGoogle Scholar
Taccogna, F., Longo, S., Capitelli, M. and Schneider, R. 2008b Surface-driven asymmetry and instability in the acceleration region of Hall thrusters. Contrib. Plasma Phys. 48 (4), 375386.Google Scholar
Taccogna, F., Longo, S., Capitelli, M. and Schneider, R. 2009 Anomalous transport induced by sheath instability in hall effect thrusters. Appl. Phys. Lett. 94, 251502.Google Scholar
Taccogna, F., Longo, S., Capitelli, M. and Schneider, R. 2010 On a new mechanism inducing anomalous transport in surface-dominated magnetically confined plasma: the sheath instability. Nuovo Cimento 125B (5–6), 529538.Google Scholar
Taccogna, F., Minelli, P., Longo, S. and Capitelli, M. 2012 Physics of hall-effect thrusters by particle model. In: AIP Conf. Proc. 1501, 13901399.Google Scholar
Taccogna, F., Schneider, R., Longo, S. and Capitelli, M. 2008a Kinetic simulations of plasma thrusters. Plasma Source Sci. and Technol. 17, 024003.Google Scholar
Tskhakaya, D., Matyash, K., Schneider, R. and Taccogna, F. 2007 The particle-in-cell method. Contrib. Plasma Phys. 47 (8–9), 549594.CrossRefGoogle Scholar
Vahedi, V. and Surendra, M. 1995 A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Comput. Phys. Commun. 87, 179198.Google Scholar
Verboncoeur, J. P. 2005 Particle simulation of plasmas: review and advances. Plasma Phys. Control. Fusion 47, A231A260.Google Scholar