Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T06:07:01.314Z Has data issue: false hasContentIssue false

Monatomic plasma-thermal radiation interaction: a weakly-ionized kinetic model

Published online by Cambridge University Press:  13 March 2009

Warren F. Phillips
Affiliation:
Department of Mechanical Engineering, Utah State University
Vedat S. Arpaci
Affiliation:
Department of Mechanical Engineering, University of Michigan

Abstract

A model for the kinetic formulation of a weakly-ionized monatomic gas, which interacts with thermal radiation, is proposed. The collision terms for particle-initiated ionization, developed in terms of a non-equilibrium degree of ionization, and the collision terms for photon-initiated ionization, developed by assuming particles remain in local equilibrium during photon relaxation, all satisfy the usual conservation principles. It is also shown that the proposed model leads to an H theorem.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D. G. M., Baum, H. & Krwok, M. 1969 Rarefied Gas Dynamics (ed. Trilling, L. and Wachman, H. Y.), vol. 1, p. 49. Academic.Google Scholar
Baum, H. R. & Farg, T.-M. 1972 Phys. Fluids, 15, 1771.CrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 Phys. Rev. 94, 511.CrossRefGoogle Scholar
Boley, C. D. & Yip, S. 1972 Phys. Fluids, 15, 1424.CrossRefGoogle Scholar
Ceroioani, C. 1969 Mathematical Methods in Kinetic Theory. Plenum.Google Scholar
Dougherty, J. P. 1963 J. Fluid Mech. 16, 126.CrossRefGoogle Scholar
Goody, R. M. 1964 Atmospheric Radiation. Oxford University Press.Google Scholar
Gross, E. P. & Krook, M. 1956 Phys. Rev. 102, 593.CrossRefGoogle Scholar
Hirschfelder, J. O., Curtiss, C. F. & Brad, R. B. 1964 Molecular Theory of Gases and Liquids. Wiley.Google Scholar
Holway, L. H. 1966 Phys. Fluids, 9, 1658.CrossRefGoogle Scholar
Kennard, E. H. 1938 Kinetic Theory of Gases. McGraw Hill.Google Scholar
Lewis, R. M. & Keller, J. B. 1962 Phys. Fluids, 5, 1248.CrossRefGoogle Scholar
Ore, A. 1955 Phys. Rev. 98, 887.CrossRefGoogle Scholar
Oxenius, J. 1966 J. Quant. Spectrosc. Radiat. Transfer, 6, 65.CrossRefGoogle Scholar
Phillips, W. F., Arpaci, V. S. & Larsen, P. S. 1970 J. Plasma Phys. 4, 429.CrossRefGoogle Scholar
Planck, W. F. & Arpaci, V. S. 1972 J. Plasma Phys. 7, 235.Google Scholar
Plarck, M. 1949 The Theory of Heat. Macmillan.Google Scholar
Rosen, P. 1954 Phys. Rev. 96, 555.CrossRefGoogle Scholar
Saha, M. N. 1920 Phil. Mag. 40, 472.CrossRefGoogle Scholar
Sampson, D. H. 1965 Radiative Contributions to Energy and Momentum Transport in a Gas Interscience.Google Scholar
Traugott, S. C. 1966 AIAA J. 4, 541.CrossRefGoogle Scholar
Welander, P. 1954 Ark. Fys. 7, 44.Google Scholar