Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T19:20:27.591Z Has data issue: false hasContentIssue false

Molecular dynamics of Yukawa liquids in gravitation: Equilibrium, Instability and Transport

Published online by Cambridge University Press:  05 November 2014

Harish Charan
Affiliation:
Institute for Plasma Research, Bhat-Village, Gandhinagar-382428, Gujarat, India
Rajaraman Ganesh*
Affiliation:
Institute for Plasma Research, Bhat-Village, Gandhinagar-382428, Gujarat, India
Ashwin Joy
Affiliation:
Institute for Plasma Research, Bhat-Village, Gandhinagar-382428, Gujarat, India
*
Email address for correspondence: [email protected]

Abstract

Using 2D molecular dynamics (MD) simulation, the equilibrium and dynamical properties of a gravitationally equilibrated Yukawa liquid are investigated. We observe that due to asymmetry introduced in one direction by gravity, several interesting features arise. For example, for a given value of coupling parameter Γ, screening parameter κ and according to a chosen value of gravitational force g (say in y-direction), the system is seen to exhibit super-, sub- or normal diffusion. Interestingly, x-averaged density profiles, unlike a barotropic fluid, acquire sharp, free surface with scale free linear y-dependence. As can be expected for a system with macroscopic gradients, self-diffusion calculated from Green–Kubo's (GK) formalism does not agree with that obtained from Einstein–Smoluchowski (ES) diffusion. A 2D-angular radial pair correlation function g(r, θ) clearly indicates asymmetric features induced by gravity. We observe that due to compression in y-direction, though in liquid state for all values of gravity considered, the transverse mode is found to be predominant as compared to the longitudinal mode, leading to a novel Anisotropic Solid-like Yukawa liquid (ASYL). In in-homogenous Yukawa liquids studied here, Mach cones are found to be asymmetric. When density gradient direction is set in the direction opposite to gravity, the equilibrium is shown to be unstable to Rayleigh–Taylor (RT) instabilities resulting in transport.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arp, O., Block, D., Bonitz, M., Fehske, H., Golubnychiy, V., Kosse, S., Ludwig, P., Melzer, A. and Piel, A. 2005 J.Phys.: Conf. Ser. 11 (1), 234.Google Scholar
Ashwin, J. and Ganesh, R. 2010 Kelvin helmholtz instability in strongly coupled yukawa liquids. Phys. Rev. Lett. 104, 215 003.Google Scholar
Beeman, D. 1976 J. Comput. Phys. 20, 130.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, 1st edn.Dover Publications, ch. 10, pp. 428490.Google Scholar
Charan, H., Ganesh, R. and Joy, A. 2014 Phys. Plasmas (1994-present) 21 (4), 043702.CrossRefGoogle Scholar
Chu, J. H. and Lin, I. 1994 Phys. Rev. Lett. 72, 40094012.CrossRefGoogle Scholar
Ciccotti, G., Hoover, W. G. and di Fisica, Societá Italiana 1986 Molecular Dynamics Simulation of Statistical Mechanical Systems: Varenna on Lake Como, Villa Monastero, 23 July - 2 August 1985. North-Holland.Google Scholar
Donk, Z., Kalman, G. J. and Hartmann, P. 2008 Dynamical correlations and collective excitations of yukawa liquids. J. Phys.: Condens. Matter 20 (41), 413 101.Google Scholar
Dubin, D. H. E. 2000 Phys. Plasmas (1994-present) 7 (10), 3895.CrossRefGoogle Scholar
Evans, D. J. 1983 J. Chem. Phys. 78, 3297.Google Scholar
Evans, D. J., Hoover, W. G., Failor, B. H., Moran, B. and Ladd, A. J. C. 1983 Phys. Rev. A 28, 1016.Google Scholar
Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 Phys. Rep. 421 (12), 1.Google Scholar
Frenkel, D. and Smit, B. 1996 Understanding Molecular Simulation: From Algorithms to Applications (Computational Science), 1st edn.Academic Press, ch. 4, pp. 7881.Google Scholar
Goertz, C. K. and Morfill, G. E. 1983 Icarus 55 (1), 219.CrossRefGoogle Scholar
Goertz, C. K. and Shan, L. 1988 Geophys. Res. Lett. 15, 84.Google Scholar
Hamaguchi, S. 1999 Plasmas and Ions 2, 57.Google Scholar
Hartmann, P., Kalman, G. J., Donko, Z. and Kutasi, K. 2005 Phys. Rev. E 72, 026 409.CrossRefGoogle Scholar
Hebner, G. A. and Riley, M. E. 2004 Phys. Rev. E 69, 026 405.CrossRefGoogle Scholar
Hebner, G. A., Riley, M. E. and Marder, B. M. 2003 Phys. Rev. E 68, 016 403.Google Scholar
Hill, J. R. and Mendis, D. A. 1981 Moon Planets 24, 431.Google Scholar
Hou, L.-J., Piel, A. and Shukla, P. K. 2009a Phys. Rev. Lett. 102, 085 002.Google Scholar
Hou, L.-J., Piel, A. and Shukla, P. K. 2009b Phys. Rev. Lett. 102, 085 002.Google Scholar
Islam, M. A. 2004 Phys. Scr. 70 (2–3), 120.Google Scholar
Kai, Kadau, Barber, J. L., Germann, T. C., Holian, B. L. and Alder, B. J. 2010 Phil. Trans. R. Soc. A 368 (1916), 1547.Google Scholar
Kalman, G., Rosenberg, M. and DeWitt, H. E. 2000 Phys. Rev. Lett. 84, 6030.Google Scholar
Khrapak, S. A., Ivlev, A. V. and Morfill, G. E. 2004 Phys. Rev. E 70, 056 405.Google Scholar
Kubo, R. 1966 Rep. Prog. Phys. 29 (1), 255.Google Scholar
Levesque, D. and Verlet, L. 1993 J. Stat. Phys. 72, 519.Google Scholar
Ma, Z. W. and Bhattacharjee, A. 2002 Phy. Plasmas (1994-present) 9 (8), 3349.Google Scholar
Melzer, A., Nunomura, S., Samsonov, D., Ma, Z. W. and Goree, J. 2000a Phys. Rev. E 62, 4162.CrossRefGoogle Scholar
Melzer, A., Schweigert, V. A. and Piel, A. 2000b Measurement of the wakefield attraction for ‘dust plasma molecules’. Phys. Scr. 61 (4), 494.Google Scholar
Melzer, A., Trottenberg, T. and Piel, A. 1994 Phys. Lett. A 191 (3), 301.Google Scholar
Merlino, R. L. and Goree, J. A. 2004 Phys. Today 57 (7), 32.Google Scholar
Morfill, G. E. and Ivlev, A. V. 2009 Rev. Mod. Phys. 81, 1353.Google Scholar
Nosenko, V. and Goree, J. 2004 Phys. Rev. Lett. 93 (15), 155 004.CrossRefGoogle Scholar
Ohta, H. and Hamaguchi, S. 2000 Phys. Plasmas (1994-present) 7 (11), 45064514.Google Scholar
Piel, A. and Melzer, A. 2002 Plasma Phys. Control. Fusion 44 (1), R1.CrossRefGoogle Scholar
Pieper, J. B., Goree, J. and Quinn, R. A. 1996 J. Vac. Sci. Technol. A 14 (2), 519–52.CrossRefGoogle Scholar
Popel, S. I., Kopnin, S. I., Golub', A. P., Dol'nikov, G. G., Zakharov, A. V., Zelenyi, L. M. and Izvekova, Y. N. 2013 Solar Syst. Res. 47 (6), 419.CrossRefGoogle Scholar
Samsonov, D. and Goree, J. 1999 Phys. Rev. E 59, 1047.Google Scholar
Samsonov, D., Goree, J., Ma, Z. W., Bhattacharjee, A., Thomas, H. M. and Morfill, G. E. 1999 Phys. Rev. Lett. 83, 3649.Google Scholar