Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T13:29:32.488Z Has data issue: false hasContentIssue false

Molecular dynamics calculation of the spectral densities of plasma fluctuations

Published online by Cambridge University Press:  01 June 2018

A. Panarese
Affiliation:
Department of Chemistry, University of Bari, Bari 70126, Italy Institute of Nanotechnology (NANOTEC), CNR, Bari 70126, Italy
D. Bruno*
Affiliation:
Institute of Nanotechnology (NANOTEC), CNR, Bari 70126, Italy
P. Tolias
Affiliation:
Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm 10044, Sweden Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples 80126, Italy
S. Ratynskaia
Affiliation:
Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm 10044, Sweden
S. Longo
Affiliation:
Department of Chemistry, University of Bari, Bari 70126, Italy Institute of Nanotechnology (NANOTEC), CNR, Bari 70126, Italy
U. de Angelis
Affiliation:
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples 80126, Italy
*
Email address for correspondence: [email protected]

Abstract

Spectral densities of plasma fluctuations are calculated for the thermal case using classical molecular dynamics (MD) assuming Coulomb interactions and a short-range cutoff radius. The aim of the calculation is to verify limits and performances of such calculations in the light of possible generalizations, e.g. collisional or non-ideal plasmas. Results are presented for ideal, collisionless, fully ionized thermal plasmas. Comparison with the analytical theory reveals a generally satisfactory agreement with possibility for improvement when more strict numerical parameters are used albeit with a strong increase in computational cost. The largest deviations have been observed in the vicinity of the weakly damped eigenmodes. The agreement is strong in other parts of the spectrum, where Landau damping is prominent, and overcomes the effects stemming from the excess collisionality and coupling as well as from the exclusion of short-range collisions.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul, R. F. & Mace, R. L. 2015 One-dimensional particle-in-cell simulations of electrostatic Bernstein waves in plasmas with kappa velocity distributions. Phys. Plasmas 22, 102107.CrossRefGoogle Scholar
Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1975 Plasma Electrodynamics Volume 2: Non-Linear Theory and Fluctuations. Pergamon Press.Google Scholar
Alexandrov, A. F., Bogdankevich, L. S. & Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. Springer.CrossRefGoogle Scholar
Dharuman, G., Stanton, L. G., Gosli, J. N. & Murillo, M. S. 2017 A generalized Ewald decomposition for screened Coulomb interactions. J. Chem. Phys. 146, 0241112.CrossRefGoogle ScholarPubMed
Donko, Z., Kalman, G. J. & Hartmann, P. 2008 Dynamical correlations and collective excitations of Yukawa liquids. J. Phys. 20 (41), 413101.Google Scholar
Frigo, M. & Johnson, S. G. 2005 The design and implementation of FFTW3. Proc. IEEE 93 (2), 216231.Google Scholar
Hamaguchi, S., Farouki, R. T. & Dubin, D. H. E. 1996 Phase diagram of Yukawa systems near the one component plasma limit revisited. J. Chem. Phys. 105, 7641.Google Scholar
Klimontovich, Yu. L. 1967 The Statistical Theory of Non-equilibrium Processes in a Plasma. Pergamon Press.Google Scholar
Klimontovich, Y. L., Wilhelmsson, H., Yakimenko, I. P. & Zagorodny, A. G. 1989 Statistical theory of plasma-molecular systems. Phys. Rep. 175 (5–6), 263.Google Scholar
Kolberg, U., Schlickeiser, R. & Yoon, P. H. 2017 Velocity fluctuations driven by the damped aperiodic mode in the intergalactic medium. Astrophys. J. 844, 124.Google Scholar
Lopez, R. A. & Yoon, P. H. 2017 Simulation of electromagnetic fluctuations in thermal magnetized plasma. Plasma Phys. Control. Fusion 59, 115003.Google Scholar
Meierbachtol, C. S., Svyatskiy, D., Delzanno, G. L., Vernon, L. J. & Moulton, J. D. 2017 An electrostatic Particle-In-Cell code on multi-block structured meshes. J. Comput. Phys. 350, 796823.Google Scholar
Nosé, S. 1984 A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511.CrossRefGoogle Scholar
Schlickeiser, R. 2012 Cosmic magnetization: from spontaneously emitted aperiodic turbulent to ordered equipartition fields. Phys. Rev. Lett. 109, 261101.Google Scholar
Sheffield, J. 1975 Plasma Scattering of Electromagnetic Radiation. Academic Press.Google Scholar
Sitenko, A. G. & Gurin, A. A. 1966 Effect of particle collisions on plasma fluctuations. Sov. Phys. JETP 22 (5), 1089.Google Scholar
Tolias, P. & Ratynskaia, S. 2013 Scattering of radiation in collisionless dusty plasmas. Phys. Plasmas 20, 043706.Google Scholar
Tolias, P., Ratynskaia, S. & de Angelis, U. 2011 Kinetic models of partially ionized complex plasmas in the low frequency regime. Phys. Plasmas 18, 073705.Google Scholar
Tolias, P., Ratynskaia, S. & de Angelis, U. 2012 Spectra of ion density and potential fluctuations in weakly ionized plasmas in the presence of dust grains. Phys. Rev. E 85, 026408.Google Scholar
Tolias, P., Ratynskaia, S., Panarese, A., Longo, S. & de Angelis, U. 2015 Natural fluctuations in un-magnetized and magnetized plasmas. J. Plasma Phys. 81 (3), 905810314.Google Scholar
Tsytovich, V. N. & de Angelis, U. 1999 Kinetic theory of dusty plasmas. I. General approach. Phys. Plasmas 6 (4), 1093.Google Scholar
Yoon, P. H. & Lopez, R. A. 2017 Spontaneous emission of electromagnetic fluctuations in magnetized plasmas. Phys. Plasmas 24, 0221117.Google Scholar
Yoon, P. H., Schlickeiser, R. & Kolberg, U. 2014 Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: the rigorous relativistic kinetic theory. Phys. Plasmas 21, 032109.Google Scholar