Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T00:31:43.088Z Has data issue: false hasContentIssue false

Models of laser-plasma ablation. Part 3. Steady-state theory: deflagration flow

Published online by Cambridge University Press:  13 March 2009

G. J. Pert
Affiliation:
Department of Applied Physics, University of Hull, Hull HU6 7RX, U.K.

Abstract

The theory of plasma ablation by laser irradiation from cylindrical and spherical solid targets is considered when thermal conduction is dominant and absorption is local at the critical density. Analytic solutions for both inhibited and uninhibited heat fluxes are developed, but only investigated in detail when flux limiting does not introduce a step discontinuity. In most cases it is found that only a restricted region of flow is steady, and must be terminated by a rarefaction wave. The transition from quasi-planar to strongly divergent flow is shown to depend on a characteristic parameter, which represents the ratio of the thermal conduction length to the target radius.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanasev, I. V., Krol, M. V., Krokhin, O. N. & Nemchinov, I. V. 1966 Appl. Maths and Mech. 30, 1218.CrossRefGoogle Scholar
Bobin, J. L. 1971 Phys. Fluids, 14, 2341.CrossRefGoogle Scholar
Caruso, A. 1976 Plasma Phys. 18, 241.CrossRefGoogle Scholar
Caruso, A., Bertotti, B. & Guipponi, P. 1966. Nuovo Cimento, 45B, 176.CrossRefGoogle Scholar
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. Wiley-Interscience.Google Scholar
Fabbro, R., Max, C. & Fabre, E. 1985 Phys. Fluids, 28, 1463.CrossRefGoogle Scholar
Fauquionon, C. & Floux, F. 1970 Phys. Fluids, 13, 386.CrossRefGoogle Scholar
Gitomer, S. J., Morse, R. L. & Newberger, B. S. 1977 Phys. Fluids, 20, 234.CrossRefGoogle Scholar
Key, M. H., Toner, W. R., Goldsack, T. J., Kilkenny, J. D., Veats, S. A., Cunningham, P. F. & Lewis, C. L. S. 1983 Phys. Fluids, 26, 2011.CrossRefGoogle Scholar
Kidder, R. E. 1974 Nucl. Fusion, 14, 797.CrossRefGoogle Scholar
Landshoff, R. 1951 Phys. Rev. 82, 442.CrossRefGoogle Scholar
Malone, R. C., McCory, R. L. & Morse, R. L. 1975 Phys. Rev. Lett. 34, 721.CrossRefGoogle Scholar
Max, C. E., McKee, C. F. & Mead, W. C. 1980 Phys. Fluids, 23, 1620.CrossRefGoogle Scholar
Nemchinov, I. V. 1967 Appl. Maths and Mech. 31, 320.CrossRefGoogle Scholar
Pert, G. J. 1974 Plasma Phys. 16, 1019.CrossRefGoogle Scholar
Pert, G. J. 1983 J. Plasma Phys. 29, 415.CrossRefGoogle Scholar
Pert, G. J. 1986 a J. Plasma Phys. 35, 43.CrossRefGoogle Scholar
Pert, G. J. 1986 b J. Plasma Phys. 36, 415.CrossRefGoogle Scholar
Schmalz, R. F. 1985 Phys. Fluids, 28, 2923.CrossRefGoogle Scholar
Spitzer, L. 1956 Physics of Fully Ionised Gases. Interscience.Google Scholar
Spitzer, L. & Härm, R. 1953 Phys. Rev. 89, 977.CrossRefGoogle Scholar
Takabe, H., Montierth, L. & Morse, R. L. 1983 Phys. Fluids, 26, 2299.CrossRefGoogle Scholar