Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T14:54:02.676Z Has data issue: false hasContentIssue false

Models of laser plasma ablation. Part 4. Steadystate theory: collisional absorption flow

Published online by Cambridge University Press:  13 March 2009

G. J. Pert
Affiliation:
Departemnt of Physics, University of York, Heslington, York Y01 5DD, UK

Abstract

The clarification of models of laser ablation by plasma heating is examined using a general dimensional argument and introducing a set of universal parameters. The regime of laser-plasma interaction in which collisional absorption and thermal conduction dominate is examined for spherical systems. Detailed scaling relations are derived for uninhibited and flux-limited thermal conduction. The complete set of regimes for steady spherical flow are examined, and it is found that the most important flows are thin collisional and thick local absorption.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanasev, I. V., Gamelii, E. G., Krokhin, O. N., & Rozanov, V. B. 1976 Soviet Phys. JETP 24, 311.Google Scholar
Afanasev, I. V., Krol, M. V., Krokhin, O. N. & Nemchinov, I. V. 1966 Appl. Maths Maths. 30, 1218.Google Scholar
Bell, A. R., Evans, R. G. & Nicholas, D. J. 1981 Phys. Rev. Lett. 46, 243.CrossRefGoogle Scholar
Bobin, J. L. 1971 Phys. Fluids 13, 386.Google Scholar
Caruso, A., Bertotti, B. & Guipponi, P. 1966 Nuovo Cim. 45B, 176.CrossRefGoogle Scholar
Delleterz, J. 1986 Can. J. Phys. 64, 932.CrossRefGoogle Scholar
Fauquignon, C. & Floux, F. 1970 Phys. Fluids 13, 396.Google Scholar
Gitomer, S. J., Morse, R. L. & Newberger, R. S. 1977 Phys. Fluids 20, 234.CrossRefGoogle Scholar
Malone, R. C. & McCory, R. L. 1975 Phys. Rev. Lett. 34, 721.Google Scholar
Matte, J. P. & Virmont, J. 1982 Phys. Rev. Lett. 49, 1936.Google Scholar
Max, C. E., McKee, C. F. & Mead, W. C. 1980 Phys. Fluids 23, 1620.CrossRefGoogle Scholar
Nemchimnov, I. V. 1967 Appl.Maths Mech. 31, 320.CrossRefGoogle Scholar
Nicholas, J. A. & Sanmartin, J. R, 1985 Plasma Phys. 27, 279.Google Scholar
Pert, G. J. 1974 Plasma Phys. 16, 1035.CrossRefGoogle Scholar
Pert, G. J. 1976 J. Phys. A9, 1797.Google Scholar
Pert, G. J. 1986 a J. Plasma Phys. 35, 43.CrossRefGoogle Scholar
Pert, G. J. 1986 b J.Plasma Phys 36, 415.CrossRefGoogle Scholar
Pert, G. J. 1988 J. Plasma Phys 39, 241.CrossRefGoogle Scholar
Sanz, J. & Sanmartin, J. R. 1983 Phys. Fluids 26, 3361.CrossRefGoogle Scholar
Spitzer, J. 1956 Physics of Fully lonised Gases. IntersCience.Google Scholar