Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T15:11:18.215Z Has data issue: false hasContentIssue false

Modelling of relativistic ion-acoustic waves in ultra-degenerate plasmas

Published online by Cambridge University Press:  23 November 2016

Fernando Haas*
Affiliation:
Physics Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, Brasil
*
Email address for correspondence: [email protected]

Abstract

We consider the relativistic ion-acoustic mode in a plasma composed by cold ions and an ultra-degenerate electron gas, described the relativistic Vlasov–Poisson system. A critical examination of popular fluid models for relativistic ion-acoustic waves is provided, comparing kinetic and hydrodynamic results. The kinetic linear dispersion relation is shown to be reproduced by the rigorous relativistic hydrodynamic equations with Chandrasekhar’s equation of state.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, S. & Ur Rahman, A. 2014 Solitons and shocks in dense astrophysical magnetoplasmas with relativistic degenerate electrons and positrons. Phys. Plasmas 21, 042116.CrossRefGoogle Scholar
Berezhiani, V. I. & Mahajan, S. M. 1995 Large relativistic density pulses in electron-positron-ion plasmas. Phys. Rev. E 52, 19681979.Google ScholarPubMed
Chandrasekhar, S. 1935 The highly collapsed configurations of a stellar mass. Mon. Not. R. Astron. Soc. 95, 207225.Google Scholar
Delsante, A. E. & Frankel, N. E. 1980 Dielectric response of a relativistic degenerate electron plasma in a strong magnetic field. Ann. Phys. 125, 137175.CrossRefGoogle Scholar
Eliasson, B. & Shukla, P. K. 2010 Dispersion properties of electrostatic oscillations in quantum plasmas. J. Plasma Phys. 76, 717.Google Scholar
Esfandyari-Kalejahi, A., Akbari-Moghanjoughi, M. & Saberian, E. 2011 Relativistic degeneracy effect on propagation of arbitrary amplitude ion-acoustic solitons in Thomas-Fermi plasmas. Plasma and Fusion Research 5, 045049.Google Scholar
Haas, F. 2011 Quantum Plasmas: An Hydrodynamic Approach. Springer.CrossRefGoogle Scholar
Haas, F. & Kourakis, I. 2010 Nonlinear hydrodynamic Langmuir waves in fully degenerate relativistic plasma. Plasma. Phys. Control. Fusion 57, 044006.Google Scholar
Hussain, S., Mahmood, S. & Ur Rehman, A. 2014 Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons. Phys. Plasmas 21, 112901.CrossRefGoogle Scholar
Infeld, E. & Rowlands, G. 2012 Nonlinear Waves, Solitons and Chaos, 2nd edn. Cambridge University Press.Google Scholar
Irfan, M., Ali, S. & Mizra, A. M. 2016 Magnetoacoustic solitons and shocks in dense astrophysical plasmas with relativistic degenerate electrons. J. Plasma Phys. 82, 905820106.CrossRefGoogle Scholar
Jancovici, B. 1962 On the relativistic degenerate electron gas. Nuovo Cimento 25, 428455.CrossRefGoogle Scholar
Kohn, W. 1959 Image of the Fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett. 2, 393394.Google Scholar
Kowalenko, V., Frankel, N. E. & Hines, K. C. 1985 Response theory of particle-anti-partcle plasmas. Phys. Rep. 126, 109187.Google Scholar
Krall, N. & Trivelpiece, A. 1973 Principles of Plasma Physics. McGraw-Hill.CrossRefGoogle Scholar
Lee, N. C. & Choi, C. R. 2007 Ion-acoustic solitary waves in a relativistic plasma. Phys. Plasmas 14, 022307022314.Google Scholar
Lindhard, D. J. 1954 On the properties of a gas of charged particles. Matematisk-Fysiske Meddelelser Kongelige Danske Videnskabernes Selskab 28, 157.Google Scholar
Lontano, M., Bulanov, S. & Koga, J. 2001 One-dimensional electromagnetic solitons in a hot electron-positron plasma. Phys. Plasmas 8, 5113.CrossRefGoogle Scholar
Masood, W. & Eliasson, B. 2011 Electrostatic solitary waves in a quantum plasma with relativistically degenerate electrons. Phys. Plasmas 18, 034503.CrossRefGoogle Scholar
McKerr, M., Haas, F. & Kourakis, I. 2014 Relativistic theory for localized electrostatic excitations in degenerate electron-ion plasmas. Phys. Rev. E 90, 033112033121.Google Scholar
McKerr, M., Haas, F. & Kourakis, I. 2016 Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma. Phys. Plasmas 23, 052120.Google Scholar
Melrose, D. 2008 Quantum Plasmadynamics: Unmagnetized Plasmas. Springer.Google Scholar
Oppenheimer, J. R. & Volkoff, G. M. 1939 On massive neutron cores. Phys. Rev. 55, 374381.CrossRefGoogle Scholar
Pegoraro, F. & Porcelli, F. 1984 Equation of state for relativistic plasma waves. Phys. Fluids 27, 16651670.CrossRefGoogle Scholar
Rahman, A., Kourakis, I. & Qamar, A. 2015 Electrostatic solitary waves in relativistic degenerate electron-positron-ion plasma. IEEE Trans. Plasma Sci. 43, 974984.Google Scholar
Saberian, E., Esfandyari-Kalejahi, A. & Akbari-Moghanjoughi, M. 2011 Propagation of ion-acoustic solitary waves in a relativistic electron-positron-ion plasma. Can. J. Phys. 89, 299309.CrossRefGoogle Scholar
Shukla, P. K. & Eliasson, B. 2012 Novel attractive force between ions in quantum plasmas. Phys. Rev. Lett. 108, 165007165110.CrossRefGoogle ScholarPubMed
Shukla, P. K., Eliasson, B. & Akbari-Moghanjoughi, M.2013 Reply to ‘Comment on novel attractive forces between ions in quantum plasmas’, E-print: arXiv:1301.3384v1 [physics.plasm-ph].CrossRefGoogle Scholar
Tyshetskiy, Yu. & Vladimirov, S. V.2013 Comment on ‘Novel attractive force between ions in quantum plasmas’, E-print arXiv:1212.4286v1 [physics.plasm-ph].Google Scholar