Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T05:00:54.139Z Has data issue: false hasContentIssue false

Minimum quadratic helicity states

Published online by Cambridge University Press:  21 November 2018

P. M. Akhmet’ev*
Affiliation:
MIEM HSE, Troitsk, Kaluzhskoe Hwy 4, Moscow 108840, Russia IZMIRAN, Troitsk, 34 Tallinskaya Str., Moscow 123458, Russia
S. Candelaresi
Affiliation:
Division of Mathematics, University of Dundee, Dundee DD1 4HN, UK
A. Y. Smirnov
Affiliation:
IZMIRAN, Troitsk, 34 Tallinskaya Str., Moscow 123458, Russia National University of Science and Technology MISiS, Moscow 119049, Russia
*
Email address for correspondence: [email protected]

Abstract

Building on previous results on the quadratic helicity in magnetohydrodynamics (MHD) we investigate particular minimum helicity states. These are eigenfunctions of the curl operator and are shown to constitute solutions of the quasi-stationary incompressible ideal MHD equations. We then show that these states have indeed minimum quadratic helicity.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhmet’ev, P. M. 2014 On combinatorial properties of a higher asymptotic ergodic invariant of magnetic lines. J. Phys.: Confer. Ser. 544 (1).Google Scholar
Akhmet’ev, P. M. 2012 Quadratic helicities and the energy of magnetic fields. Proc. Steklov Inst. Math. 278 (1), 1021.Google Scholar
Akhmet’ev, P. M., Candelaresi, S. & Smirnov, A. Y. 2017 Calculations for the practical applications of quadratic helicity in MHD. Phys. Plasmas 24 (10), 102128.Google Scholar
Anosov, D. V. 1967 Geodesic flows on closed Riemannian manifolds of negative curvature. Tr. Mat. Inst. Steklova. 90, 3210.Google Scholar
Arnol’d, V. I. & Khesin, B. A. 2013 Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125. Springer.Google Scholar
Arnold, V. I. 1974 The asymptotic hopf invariant and its applications. Sel. Math. Sov. 5, 327345.Google Scholar
Berger, M. A. & Field, G. B. 1984 The topological properties of magnetic helicity. J. Fluid Mech. 147, 133148.Google Scholar
Candelaresi, S. & Brandenburg, A. 2011 Decay of helical and nonhelical magnetic knots. Phys. Rev. E 84 (1), 016406.Google Scholar
Dehornoy, P. 2015 Geodesic flow, left-handedness and templates. Algebr. Geom. Topol. 15 (3), 15251597.Google Scholar
Del Sordo, F., Candelaresi, S. & Brandenburg, A. 2010 Magnetic-field decay of three interlocked flux rings with zero linking number. Phys. Rev. E 81, 036401.Google Scholar
Enciso, A., Peralta-Salas, D. & de Lizaur, F. T. 2016 Helicity is the only integral invariant of volume-preserving transformations. Proc. Natl. Acad. Sci. USA 113 (8), 20352040.Google Scholar
Frisch, U., Pouquet, A., Léorat, J. & Mazure, A. 1975 Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68, 769778.Google Scholar
Ghys, E. & Leys, J.2006 Lorenz and modular flows: a visual introduction, AMS, www.ams.org/featurecolumn/archive/lorenz.html.Google Scholar
Hornig, G. & Schindler, K. 1996 Magnetic topology and the problem of its invariant definition. Phys. Plasmas 3 (3), 781791.Google Scholar
Kamchatnov, A. M. 1982 Topological solitons in magnetohydrodynamics. Sov. J. Expl Theor. Phys. 82, 117124.Google Scholar
Kleeorin, N. I. & Ruzmaikin, A. A. 1982 Dynamics of the average turbulent helicity in a magnetic field. Magnetohydrodynamics 18 (2), 116.Google Scholar
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117129.Google Scholar
Parker, E. N. 1972 Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 174, 499.Google Scholar
Russell, A. J. B., Yeates, A. R., Hornig, G. & Wilmot-Smith, A. L. 2015 Evolution of field line helicity during magnetic reconnection. Phys. Plasmas 22 (3), 032106.Google Scholar
Ruzmaikin, A. & Akhmetiev, P. 1994 Topological invariants of magnetic fields, and the effect of reconnections. Phys. Plasmas 1, 331336.Google Scholar
Semenov, V. S., Korovinski, D. B. & Biernat, H. K. 2002 Euler potentials for the MHD Kamchatnov–Hopf soliton solution. Nonlinear Process. Geophys. 9, 347354.Google Scholar
Taylor, J. B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 11391141.Google Scholar
Wilmot-Smith, A. L., Pontin, D. I. & Hornig, G. 2010 Dynamics of braided coronal loops. Astron. Astrophys. 516, A5.Google Scholar
Woltjer, L. 1958 A theorem on force-free magnetic fields. Proc. Natl Acad. Sci. USA 44, 489491.Google Scholar
Yeates, A. R. & Hornig, G. 2011 A generalized flux function for three-dimensional magnetic reconnection. Phys. Plasmas 18 (10), 102118.Google Scholar
Yeates, A. R., Hornig, G. & Wilmot-Smith, A. L. 2010 Topological constraints on magnetic relaxation. Phys. Rev. Lett. 105 (8), 085002.Google Scholar
Zelikin, M. I. 2008 Superconductivity of plasma and fireballs. J. Math. Sci. 151 (6), 34733496.Google Scholar