Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T00:28:48.470Z Has data issue: false hasContentIssue false

A mechanism for Taylor relaxation in Z-pinches. Part 1. Dynamo mechanism

Published online by Cambridge University Press:  13 March 2009

S. K. H. Auluck
Affiliation:
Neutron Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India

Abstract

The dynamo mechanism in an RFP is explained on the basis of new terms in the MHD equations which are proportional to the electron mass and are traditionally neglected. A new azimuthal dynamo current is obtained which is shown to be positive definite. Sustained, spontaneous self-reversal of the toroidal field naturally follows from this. The (F, Θ) curve calculated from this theory under certain assumptions agrees well with experimental data. The theory predicts the presence of large-Larmor-radius particles in the RFP. It also predicts a spontaneous axial magnetic field in linear Z-pinches. Preliminary experiments on low-energy Z-pinches corroborate this prediction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auluck, S. K. H. 1984 J. Plasma Phys. 32 349.CrossRefGoogle Scholar
Auluck, S. K. H., Kulkarni, L. V. & Srinivasan, M. 1985 Proceedings of 4th International Workshop on Plasma Focus and Z-Pinch Research, Warsaw, 1985.Google Scholar
Budin, H. A. B. & Newton, A. A. 1980 Nucl. Fusion, 20, 1255.CrossRefGoogle Scholar
Butt, E. P., Cole, H. C., Dellis, A. N., Gibson, A., Rusbridge, M. & Wort, D. 1966 Proceedings of 2nd International Conference on Plasma Physics and Controlled Fusion, Culham, vol. 2, p. 751. IAEA.Google Scholar
Chen, F. F. 1974 Introduction to Plasma Physics. Plenum.Google Scholar
Colgate, S. A., Fergusson, J. F. & Furth, H. P. 1958 Proceedings of 2nd International Conference on Peaceful Uses of Atomic Energy, Geneva, vol. 32, p. 129.Google Scholar
Gimblett, C. G. & Watkins, M. W. 1975 Proceedings of 7th European Conference on Controlled Fusion and Plasma Physics, Lausanne, vol. 1, p. 103.Google Scholar
Gimblett, C. G. & Watkins, M. W. 1976 Proceedings of 3rd Topical Conference, Abingdon, p. 279. Pergamon.Google Scholar
Gowers, C. W., Ortolani, S., Robinson, D. C. & Watts, M. R. C. 1977 Bull. Am. Phys. Soc. Ser. II, 22, 1190.Google Scholar
Kadomtsev, B. B. 1962 Nucl. Fus. Suppl. Part 3, p. 969.Google Scholar
Lehnert, B. 1985 Comments on Plasma Physics, 9, 91.Google Scholar
Lindemuth, I. R. & Kirkpatrick, R. C. 1983 Nucl. Fusion, 23, 263.CrossRefGoogle Scholar
Longmire, C. L. 1963 Elementary Plasma Physics. Wiley.Google Scholar
Rager, J. P. 1981 Proceedings of 2nd International Workshop on Plasma Focus and Z-Pinch Research, Moscow, p. 43.Google Scholar
Rusbridge, M. G. 1977 Plasma Phys. 19, 499.CrossRefGoogle Scholar
Rusbridge, M. G. 1980 Plasma Phys. 22, 331.CrossRefGoogle Scholar
Taylor, J. B. 1974 Phys. Rev. Lett. 33, 1139.CrossRefGoogle Scholar
Verhage, A. J. L., Furzer, A. S. & Robinson, D. C. 1978 Nucl. Fusion, 18, 457.CrossRefGoogle Scholar
Witalis, E. A. 1961 Report CLM-R7.Google Scholar