Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T06:16:37.203Z Has data issue: false hasContentIssue false

A mechanism for self-generated magnetic fields in the interaction of ultra-intense laser pulses with thin plasma targets

Published online by Cambridge University Press:  01 February 2009

A. ABUDUREXITI
Affiliation:
Physics Department, Xinjiang University, Urumqi, 830046, People's Republic of China Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan ([email protected])
T. OKADA
Affiliation:
Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan ([email protected])
S. ISHIKAWA
Affiliation:
Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan ([email protected])

Abstract

In the study of the interaction of ultra-intense laser pulses with thin plasma targets there appears self-generated magnetic fields in the plasma target. The strong magnetic fields were directly measured in the plasma target, and were attributed to a mechanism of non-parallel electron temperature and density gradients. These magnetic fields can become strong enough to significantly affect the plasma transport. The underlying mechanism of the self-generated magnetic fields in the ultra-intense laser–plasma interactions is presented by using a two-dimensional particle-in-cell simulation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Okada, T., Andreev, A. A., Mikado, Y. and Okubo, K. 2006 Phys. Rev. E 74, 026401.CrossRefGoogle Scholar
[2]Mackinon, A. J., Sentoku, Y., Patel, P. K., Price, D. W., Hatchett, S., Key, M. H., Andersen, C., Snavely, R. and Freeman, R. R. 2002 Phys. Rev. Lett. 88, 215006.CrossRefGoogle Scholar
[3]Sentoku, Y., Mima, K., Sheng, Z. M., Kaw, P., Nishihara, K. and Nishikawa, K. 2002 Phys. Rev. E 65, 046408.Google Scholar
[4]Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., Mackinnon, A. and Snavely, R. A. 2001 Phys. Plasmas 8, 542.CrossRefGoogle Scholar
[5]Tatarakis, M., Gopal, A., Watts, I., Beg, F. N., Dangor, A. E., Kruselnick, K., Wagner, U., Norreys, P. A., Clark, E. L., Zepf, M. and Evans, R. G. 2002 Phys. Plasmas 9, 2244.CrossRefGoogle Scholar
[6]Haines, M. G. 1997 Phys. Rev. Lett. 78, 254.Google Scholar
[7]Tsintsadze, L. N. and Shukla, P. K. 1994 Phys. Lett. A 187, 67.CrossRefGoogle Scholar
[8]Sudan, R. N. 1993 Phys. Rev. Lett. 70, 3075.CrossRefGoogle Scholar
[9]Okada, T. and Ogawa, K. 2007 Phys. Plasmas 14, 072702.CrossRefGoogle Scholar
[10]Sugie, M., Ogawa, K. and Okada, T. 2006 Japan. J. Appl. Phys. 45, L1311.CrossRefGoogle Scholar
[11]Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
[12]Okada, T., Yabe, T. and Niu, K. 1977 J. Phys. Soc. Japan 43, 1042.CrossRefGoogle Scholar
[13]Yu, M. Y. and Shukla, P. K. 1978 Phys. Rev. A 18, 1591.CrossRefGoogle Scholar
[14]Shukla, P. K., Yu, M. Y. and Tsintsadze, N. L. 1984 Phys. Fluids 27, 327.CrossRefGoogle Scholar
[15]Yu, M. Y., Shukla, P. K. and Tsintsadze, N. L. 1982 Phys. Fluids 25, 1049.Google Scholar
[16]Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. 1986 Phys. Rep. 138, 1.CrossRefGoogle Scholar