Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T15:09:38.174Z Has data issue: false hasContentIssue false

The mean electromotive force generated by random Alfvén waves in a collisionless plasma under a non-uniform mean magnetic field

Published online by Cambridge University Press:  13 March 2009

Tomikazu Namikawa
Affiliation:
Department of Physics, Faculty of Science, Osaka City University, Osaka, Japan
Hiromitsu Hamabata
Affiliation:
Department of Physics, Faculty of Science, Osaka City University, Osaka, Japan

Abstract

The mean electromotive force generated by random Alfvén waves in a collision-less plasma is evaluated taking into account mean magnetic field gradients. It is shown that the mean electromotive force associated with a magnetic shear of the mean field and the helicity spectrum function of the random velocity field exists and has a component parallel to the mean magnetic field when it is generated by random waves propagating along the mean magnetic field and by statistically anisotropic random waves propagating in arbitrary directions. The results are applied to the magnetospheric substorms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akasofu, S.-I. 1977 Physics of Magnetospheric Substorms. Reidel.Google Scholar
Björnsson, A., Hillebrand, O. & Voelker, H. 1971 Z. Geophys. 37, 1031.Google Scholar
Fälthammar, C.-G. 1977 Rev. Geophys. Space Phys. 15, 457.Google Scholar
Fukunishi, H. 1975 J. Geophys. Res. 80, 98.Google Scholar
Gimblett, C. G. & Allan, D. W. 1976 J. Plasma Phys. 16, 389.CrossRefGoogle Scholar
Heacock, R. R. & Hunsucker, R. D. 1981 Space Sci. Rev. 28, 191.Google Scholar
Iijima, T. & Potemra, T. A. 1978 J. Geophys. Res. 83, 599.Google Scholar
Krause, F. & Rädler, K. H. 1981 Mean Field Magnetohydrodynamics and Dynamo Theory. Pergamon.Google Scholar
Kuwashima, M. 1978 Mem. Nat. Inst. Polar Res. Japan, Series A, 15, 79.Google Scholar
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Namikawa, T. 1980 Highlights of the Japanese IMS Program, p. 430. Inst. Space Aeronaut. Sci., University of Tokyo.Google Scholar
Namikawa, T., Hosoya, Y. & Hamabata, H. 1981 Magnetospheric Dynamics: Proceedings of ISAS Symposium on Magneto-Ionosphere, p. 77. Inst. Space Aeronaut. Sci., University of Tokyo.Google Scholar
Namikawa, T. & Hamabata, H. 1982 J. Plasma Phys. 000, 000.Google Scholar
Parker, E. N. 1979 Cosmical magnetic fields. Oxford University Press.Google Scholar
Roberts, P. H. & Stix, M. 1971 The Turbulent Dynamo: a Translation of a Series of Papers by F. Krause, K.-H. Rädler & M. Steenbeck. NCAR, Boulder, Colorado Tech. Note, 1A-60.Google Scholar
Steenbeck, M., Krause, F. & Rädler, K. H. 1966 Z. Naturf. 21a, 369.Google Scholar
Sutcliffe, P. R. 1975 Planet. Space Sci. 23, 1581.Google Scholar
Sutcliffe, P. R. 1979 Proceedings of International Workshop on Selected Topics of Magnetospheric Phys., Tokyo, p. 94.Google Scholar
Wälder, M., Deinzer, W. & Stix, M. 1980 J. Fluid Mech. 96, 207.Google Scholar