Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T14:18:34.408Z Has data issue: false hasContentIssue false

The Maxwellian plus water-bag model: application to the propagation of longitudinal electron waves in a plasma with Maxwellian and mono-energetic supra-thermal electrons

Published online by Cambridge University Press:  13 March 2009

J. P. Treguier
Affiliation:
Département CPM/PMT, Centre National d'Etudes des Télécommunications, 22301 Lannion, France
D. Henry
Affiliation:
Département CPM/PMT, Centre National d'Etudes des Télécommunications, 22301 Lannion, France

Extract

This paper is a theoretical and experimental study of the propagation of longitudinal electron waves in a collisionless, homogeneuos, isotropic plasma, composed of Maxwellian and supra-thermal electrons. Assuming the supra-thermal electrons are mono-energetic, the velocity distribution function is chosen as a Maxwellian plus water-bag distribution; then, using the method of residues (inverse Fourier–Laplace transform), the behaviour of the electric field is found to be in good agreement with experimental results obtained for a plasma of Maxwellian and quasi-mono-energetic electrons. The plasma parameters can be deduced from the theoretical dispersion curves matching the experimental points; they are found to agree well with those measured by electrostatic probes. Experimental values of damping and excitation coefficients are also compared with the theoretical. The results suggest that a longitudinal electron wave propagation experiment may be used as a powerful diagnostic tool to examine non-Maxwellian plasmas.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashihara, O. & Takayanagi, K. 1974 Planet Space Sci. 22, 1201.CrossRefGoogle Scholar
Buckley, R. 1968 J. Plasma Phys. 2, 339.CrossRefGoogle Scholar
Buzzi, J. M. 1973 J. de Phys. 34, 13.CrossRefGoogle Scholar
Deparokh, D. C. 1962 J. Electron. Control, 13, 417.Google Scholar
Derfler, H. 1966 Proc. 7th Int. Conf. on Phenomena in Ionized Gases, Belgrade, p. 282.Google Scholar
Derfler, H. & Simonen, T. 1966 Phys. Rev. Lett. 17, 172.CrossRefGoogle Scholar
Derfler, H. & Simonen, T. 1967 J. Appl. Phys. 38, 5005.CrossRefGoogle Scholar
Drummond, J. E. 1963 Rev. Sci. Instr. 34, 779.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Gould, R. W. 1964 Phys. Rev. A 136, 991.CrossRefGoogle Scholar
Henry, D. & Treguier, J. P. 1972a Phys. Lett. A 38, 115.CrossRefGoogle Scholar
Henry, D. & Treguier, J. P. 1972b J.Plasma Phys. 8, 311.CrossRefGoogle Scholar
Henry, D. & Treguier, J. P. 1973 Electronica y Fisica Aplicada, 16, 485.Google Scholar
Jackson, J. D. 1960 J. Nuclear Energy, Cl, 171.CrossRefGoogle Scholar
Kaway, Y. & Kondo, K. 1971 J. Phys. Soc. Japan, 30, 857.CrossRefGoogle Scholar
Kaway, Y., Nakamura, Y., Iton, T. & Kawabe, T. 1973 Phys. Fluids, 16, 1307.CrossRefGoogle Scholar
Kuehl, H. H. 1964 J. Math. Phys. 3, 218.CrossRefGoogle Scholar
Kuehl, H. H. 1967 Radio Sci. 1, 73.CrossRefGoogle Scholar
Kuehl, H. H., Steward, G. E. & Yeh, C. 1965 Phy. Fluids, 8, 723.CrossRefGoogle Scholar
Landau, L. 1946 J. Phys. USSR, 10, 45.Google Scholar
Le Coquil, E., Henry, D., Le, Meur J. P., Castrec, C. & Treguter, J. P. 1971 Rev. Phys. Appliquée, 6, 467.CrossRefGoogle Scholar
Massel, G. A. 1967 Ph.D. thesis, Department of Physics, North Caroline State University.Google Scholar
Moore, C. D. & Malmberg, J. H. 1969 Rev. Sci. Instr. 40, 770.CrossRefGoogle Scholar
Ohnuma, T., Ohnuki, S., Fujita, T. & Adachi, S. 1974 Phys. Rev. Lett. 15, 820.CrossRefGoogle Scholar
Roos, B. W. 1969 Analytical Functions and Distributions in Physics and Engineering Wiley.Google Scholar
Simonen, T. 1966 Institute for Plasma Research, Stanford University, Rep. 100.Google Scholar
Treguier, J. P. & Henry, P. 1973 a CNET Lannion, France, NTI CPM/PMT/20.Google Scholar
Treguier, J. P. & Henry, D. 1973b Proc. 11th Int. Conf. on Phenomena in Ionized Gases, Prague, p. 356.Google Scholar
Tutter, M. 1968 Plasma Phys. 10, 775.CrossRefGoogle Scholar
Van Hoven, G. 1966 Phys. Rev. Lett. 17, 169.CrossRefGoogle Scholar