Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T02:15:10.745Z Has data issue: false hasContentIssue false

Magnetized current filaments as a source of circularly polarized light

Published online by Cambridge University Press:  15 February 2021

U. Sinha
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisboa, Portugal Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425Jülich, Germany
K. M. Schoeffler*
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisboa, Portugal
J. Martins
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisboa, Portugal
J. Vieira
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisboa, Portugal
R. A. Fonseca
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisboa, Portugal DCTI/ISCTE Instituto Universitário de Lisboa, 1649-026Lisboa, Portugal
L. O. Silva
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisboa, Portugal
*
Email address for correspondence: [email protected]

Abstract

We show that the Weibel or current filamentation instability can lead to the emission of circularly polarized radiation. Using particle-in-cell simulations and a radiation post-processing numerical algorithm, we demonstrate that the level of circular polarization increases with the initial plasma magnetization, saturating at ${\sim }13\,\%$ when the magnetization, given by the ratio of magnetic energy density to the electron kinetic energy density, is larger than 0.05. Furthermore, we show that this effect requires an ion–electron mass ratio greater than unity. These findings, which could also be tested in currently available laboratory conditions, show that the recent observation of circular polarization in gamma-ray burst afterglows could be attributed to the presence of magnetized current filaments driven by the Weibel or current filamentation instability.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, E. P., Grismayer, T., Fonseca, R. A. & Silva, L. O. 2015 Transverse electron-scale instability in relativistic shear flows. Phys. Rev. E 92, 021101.CrossRefGoogle ScholarPubMed
Alves, E. P., Grismayer, T., Martins, S. F., Fiúza, F., Fonseca, R. A. & Silva, L. O. 2012 Large-scale magnetic field generation via the kinetic Kelvin–Helmholtz instability in unmagnetized scenarios. Astrophys. J. 746 (2), L14.CrossRefGoogle Scholar
Bandiera, R. & Petruk, O. 2016 Radio polarization maps of shell-type supernova remnants–I. Effects of a random magnetic field component and thin-shell models. Mon. Not. R. Astron. Soc. 459 (1), 178198.CrossRefGoogle Scholar
Fiuza, F., Fonseca, R. A., Tonge, J., Mori, W. B. & Silva, L. O. 2012 Weibel-instability-mediated collisionless shocks in the laboratory with ultraintense lasers. Phys. Rev. Lett. 108, 235004.CrossRefGoogle ScholarPubMed
Fiuza, F., Swadling, G. F., Grassi, A., Rinderknecht, H. G., Higginson, D. P., Ryutov, D. D., Bruulsema, C., Drake, R. P., Funk, S., Glenzer, S., et al. 2020 Electron acceleration in laboratory-produced turbulent collisionless shocks. Nat. Phys. 16, 916920.CrossRefGoogle Scholar
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S., Katsouleas, T., et al. 2002 OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators. Lecture Notes in Computer Science, vol. 2331. 342351.CrossRefGoogle Scholar
Fonseca, R. A., Vieira, J., Fiúza, F., Davidson, A., Tsung, F. S., Mori, W. B. & Silva, L. O. 2013 Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Control. Fusion 55 (12), 124011.CrossRefGoogle Scholar
Fox, W., Fiksel, G., Bhattacharjee, A., Chang, P.-Y., Germaschewski, K., Hu, S. X. & Nilson, P. M. 2013 Filamentation instability of counterstreaming laser-driven plasmas. Phys. Rev. Lett. 111, 225002.CrossRefGoogle ScholarPubMed
Gruzinov, A. & Waxman, E. 1999 Gamma-ray burst afterglow: polarization and analytic light curves. Astrophys. J. 511 (2), 852.CrossRefGoogle Scholar
Hededal, C. B. & Nordlund, Å. 2005 Gamma-ray burst synthetic spectra from collisionless shock pic simulations. arXiv:astro-ph/0511662.Google Scholar
Huntington, C. M., Fiuza, F., Ross, J. S., Zylstra, A. B., Drake, R. P., Froula, D. H., Gregori, G., Kugland, N. L., Kuranz, C. C., Levy, M. C., et al. 2015 Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nat. Phys. 11 (2), 173.CrossRefGoogle Scholar
Jackson, J. D. 2012 Classical Electrodynamics. John Wiley and Sons.Google Scholar
Linden, T. 2015 Circular polarization of pulsar wind nebulae and the cosmic-ray positron excess. Astrophys. J. 799 (2), 200.CrossRefGoogle Scholar
Lopez-Rodriguez, E., Alonso-Herrero, A., Diaz-Santos, T., Gonzalez-Martin, O., Ichikawa, K., Levenson, N. A., Martinez-Paredes, M., Nikutta, R., Packham, C., Perlman, E., et al. 2018 The origin of the mid-infrared nuclear polarization of active galactic nuclei. Mon. Not. R. Astron. Soc. 478 (2), 23502358.CrossRefGoogle Scholar
Martins, J. L., Martins, S. F., Fonseca, R. A. & Silva, L. O. 2009 a Radiation post-processing in PIC codes. In Harnessing Relativistic Plasma Waves as Novel Radiation Sources from Terahertz to X-Rays and Beyond (ed. D. A. Jaroszynski & A. Rousse), vol. 7359, p. 73590V. International Society for Optics and Photonics.CrossRefGoogle Scholar
Martins, S. F., Fonseca, R. A., Silva, L. O. & Mori, W. B. 2009 b Ion dynamics and acceleration in relativistic shocks. Astrophys. J. Lett. 695 (2), L189.CrossRefGoogle Scholar
Matsumiya, M. & Ioka, K. 2003 Circular polarization from gamma-ray burst afterglows. Astrophys. J. Lett. 595 (1), L25.CrossRefGoogle Scholar
Medvedev, M. V. & Loeb, A. 1999 Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526 (2), 697.CrossRefGoogle Scholar
Melrose, D. B. 1971 On the degree of circular polarization of synchrotron radiation. Astrophys. Space Sci. 12, 172192.CrossRefGoogle Scholar
Milne, D. K. & Dickel, J. R. 1974 Polarization Observations of Supernova Remnants, vol. 60. Springer.Google Scholar
Nava, L., Nakar, E. & Piran, T. 2015 Linear and circular polarization in ultra-relativistic synchrotron sources–implications to GRB afterglows. Mon. Not. R. Astron. Soc. 455 (2), 15941606.CrossRefGoogle Scholar
Nishikawa, K.-I., Mizuno, Y., Gómez, J. L., Duţan, I., Meli, A., Niemiec, J., Kobzar, O., Pohl, M., Sol, H., MacDonald, N., et al. 2019 Relativistic jet simulations of the Weibel instability in the slab model to cylindrical jets with helical magnetic fields. Galaxies 7 (1), 29.CrossRefGoogle Scholar
Ruyer, C. & Fiuza, F. 2018 Disruption of current filaments and isotropization of the magnetic field in counterstreaming plasmas. Phys. Rev. Lett. 120, 245002.CrossRefGoogle ScholarPubMed
Ruyer, C., Gremillet, L., Debayle, A. & Bonnaud, G. 2015 Nonlinear dynamics of the ion Weibel-filamentation instability: an analytical model for the evolution of the plasma and spectral properties. Phys. Plasmas 22 (3), 032102.CrossRefGoogle Scholar
Sagiv, A., Waxman, E. & Loeb, A. 2004 Probing the magnetic field structure in gamma-ray bursts through dispersive plasma effects on the afterglow polarization. Astrophys. J. 615 (1), 366.CrossRefGoogle Scholar
Sarri, G., Poder, K., Cole, J. M., Schumaker, W., Di Piazza, A., Reville, B., Dzelzainis, T., Doria, D., Gizzi, L. A., Grittani, G., et al. 2015 Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nat. Commun. 6, 6747.CrossRefGoogle ScholarPubMed
Sazonov, V. N. 1969 Generation and transfer of polarized synchrotron radiation. Sov. Astron. 396 (13).Google Scholar
Shukla, N., Stockem, A., Fiúza, F. & Silva, L. O. 2012 Enhancement in the electromagnetic beam-plasma instability due to ion streaming. J. Plasma Phys. 78 (2), 181187.CrossRefGoogle Scholar
Silva, L. O., Bingham, R., Dawson, J. M. & Mori, W. B. 1999 Ponderomotive force of quasiparticles in a plasma. Phys. Rev. E 59, 22732280.CrossRefGoogle Scholar
Silva, L. O., Fonseca, R. A., Tonge, J. W., Mori, W. B. & Dawson, J. M. 2002 On the role of the purely transverse Weibel instability in fast ignitor scenarios. Phys. Plasmas 9 (6), 24582461.CrossRefGoogle Scholar
Sinha, U., Keitel, C. H. & Kumar, N. 2019 Polarized light from the transportation of a matter-antimatter beam in a plasma. Phys. Rev. Lett. 122, 204801.CrossRefGoogle ScholarPubMed
Sironi, L. & Spitkovsky, A. 2009 a Particle acceleration in relativistic magnetized collisionless pair shocks: dependence of shock acceleration on magnetic obliquity. Astrophys. J. 698 (2), 1523.CrossRefGoogle Scholar
Sironi, L. & Spitkovsky, A. 2009 b Synthetic spectra from particle-in-cell simulations of relativistic collisionless shocks. Astrophys. J. Lett. 707 (1), L92.CrossRefGoogle Scholar
Spitkovsky, A. 2008 Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys. J. Lett. 682 (1), L5.CrossRefGoogle Scholar
Stockem, A., Grismayer, T., Fonseca, R. A. & Silva, L. O. 2014 Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping. Phys. Rev. Lett. 113, 105002.CrossRefGoogle ScholarPubMed
Toma, K., Ioka, K. & Nakamura, T. 2007 Probing the efficiency of electron-proton coupling in relativistic collisionless shocks through the radio polarimetry of gamma-ray burst afterglows. Astrophys. J. Lett. 673 (2), L123.CrossRefGoogle Scholar
Troja, E., Lipunov, V. M., Mundell, C. G., Butler, N. R., Watson, A. M., Kobayashi, S., Cenko, S. B., Marshall, F. E., Ricci, R., Fruchter, A., et al. 2017 Significant and variable linear polarization during the prompt optical flash of GRB 160625b. Nature 547 (7664), 425.CrossRefGoogle ScholarPubMed
Weibel, E. S. 1959 Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 8384.CrossRefGoogle Scholar
Wiersema, K., Covino, S., Toma, K., Van Der Horst, A. J., Varela, K., Min, M., Greiner, J., Starling, R. L. C., Tanvir, N. R., Wijers, R. A. M. J., et al. 2014 Circular polarization in the optical afterglow of GRB 121024a. Nature 509 (7499), 201.CrossRefGoogle ScholarPubMed
Zenitani, S. & Hoshino, M. 2008 The role of the guide field in relativistic pair plasma reconnection. Astrophys. J. 677 (1), 530544.CrossRefGoogle Scholar