Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T00:30:09.275Z Has data issue: false hasContentIssue false

Low-frequency instabilities of a warm plasma in a magnetic field: Part 1. Instabilities driven by field-aligned currents

Published online by Cambridge University Press:  13 March 2009

Dean F. Smith
Affiliation:
High Altitude Observatory, National Center for Atmospheric Research,*Boulder, Colorado 80303, and Max Planck Institut für Physik und Astrophysik, Institut für extraterrestrische Physik, 8046 Garching, Federal Republic of Germany
Joseph V. Hollweg
Affiliation:
High Altitude Observatory, National Centre for Atmospheric Research,*Boulder, Colorado 80303, and Max Planck Institut für Aeronomie, 3411 Katlenburg-Lindau, Federal Republic of Germany

Abstract

The marginal stability of a plasma carrying current along the static magnetic field with isotropic Maxwellian ions and isotropic Maxwellian electrons drifting relative to the ions is investigated. The complete electromagnetic dispersion relation is studied using numerical techniques; the electron sums are restricted to three terms which limits the analysis to frequencies much less than the electron gyro-frequency, but includes frequencies somewhat above the ion gyro-frequency. A ‘kink-like’ instability and an instability of the Alfvén mode are found to have the lowest threshold drift velocities in most cases. In fact the threshold drift for the kink-like instability can be significantly less than the ion thermal speed. Electrostatic and electromagnetic ion-cyclotron instabilities are also found as well as the electro-static ion-acoustic instability. No instability of the fast magnetosonic mode was found. The stability analysis provides only threshold drift velocities and gives no information about growth rates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernstein, I. B. & Kulsrud, R. M. 1960 Phys. Fluids, 3, 937.CrossRefGoogle Scholar
Biskamp, D. & Chodura, R. 1973 Phys. Fluids, 16, 893.CrossRefGoogle Scholar
Drummond, W. E. & Rosenbluth, M. N. 1962 Phys. Fluids, 5 1507.CrossRefGoogle Scholar
Forslund, D. W. 1972 NASA-SP-308, p. 346.Google Scholar
Fried, B. D. & Gould, R. W. 1961 Phys. Fluids, 4, 139.CrossRefGoogle Scholar
Fried, B. D., Kennel, C. F., MacKenzie, K., Coroniti, F. V., Kindel, J. M., Stenzel, R., Taylor, R. J., White, R., Wong, A. Y., Bernstein, W., Sellen, J. M., Forslund, D. & Sagdeev, R. Z. 1971 Plasma Physics and Controlled Nuclear Fusion Research, vol. II, p. 67. IAEA, Vienna.Google Scholar
Gary, S. P. & Forslund, D. W. 1975 Phys. Letters, A54, 347.CrossRefGoogle Scholar
Hasegawa, A. 1971 Rev. Geophys. Space Sci. 9, 703.CrossRefGoogle Scholar
Hollweg, J. V. & Smith, D. F. 1976 J. Plasma Phys. 15, 245.CrossRefGoogle Scholar
Jackson, A. E. 1960 Phys. Fluids, 3, 786.CrossRefGoogle Scholar
Kindel, J. M. & Kennel, C. F. 1971 J. Geophys. Res. 76, 3055.CrossRefGoogle Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-hill.CrossRefGoogle Scholar
Lowder, R. S. & Thomassen, K. I. 1973 Phys. Fluids, 16, 1497.CrossRefGoogle Scholar
Smith, D. F. & Priest, E. R. 1972 Astrophys. J. 176, 487.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Stringer, T. E. 1964 J. Nucl. Energy, C 6, 267.CrossRefGoogle Scholar
Vasyliunas, V. 1975 Rev. Geophys. Space Phys. 13, 303.CrossRefGoogle Scholar