Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T14:15:29.819Z Has data issue: false hasContentIssue false

Lower hybrid oscillating two-stream instability in a plasma with magnetic shear

Published online by Cambridge University Press:  13 March 2009

J. M. Wersinger
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Switzerland
A. H. Kritz
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Switzerland, and Plasma Physics Laboratory, Princeton University, Princeton, N.J. 08540
F. Troyon
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Abstract

Magnetic shear is found to have a strong effect on the propagation characteristics of the lower hybrid parametric daughter waves but no significant effect on the pump wave. The analysis of the OTS instability shows that the convective damping introduced by magnetic shear acts on a distance L⋍ H(me/mi, where H is the magnetic shear scale length. There are two regimes for the convective damping, depending on the wavelength of the parametric daughter waves. For small wavelengths the growth rates are linear functions of (kL)-1. For large wavelengths the growth rates are exponentially decreasing functions of (kL)-1.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berger, R. L. & Perkins, F. W. 1976 Phys. Fluids, 19, 406.CrossRefGoogle Scholar
Berger, R. L., Chen, L., Kaw, P. K. & Perkins, F. W. 1977 Phys. Fluids, 20, 1864.CrossRefGoogle Scholar
Chang, R. R. H. & Porkolab, M. 1973 Phys. Rev. Lett. 31, 1241.CrossRefGoogle Scholar
Chang, R. P. H., & Porkolab, M. 1974 Phys. Rev. Lett. 32, 1227.CrossRefGoogle Scholar
Chen, L. & Berger, R. L. 1977 Nucl. Fusion, 17, 779.CrossRefGoogle Scholar
Chu, T. K., Bernabei, S. & Motley, R. W. 1973 Phys. Ret. Lett. 31, 211.CrossRefGoogle Scholar
Fried, B. D., Ikemura, T., Nishikawa, K. & Schmidt, G. 1976 Phys. Fluids, 19, 1975.CrossRefGoogle Scholar
Hooke, W. M. & Bernabei, S. 1972 Phys. Rev. Lett. 29, 1218.CrossRefGoogle Scholar
Kindel, J. M., Okuda, H. & Dawson, J. M. 1972 Phys. Rev. Lett. 29, 995.CrossRefGoogle Scholar
Kuo, Y. Y. & Chen, L. 1976 Phys. Fluids, 19, 1223.CrossRefGoogle Scholar
Liu, C. S. & Rosenbluth, M. N. 1976 Phys. Fluids, 19, 967.CrossRefGoogle Scholar
Ott, E. 1975 Phys. Fluids, 18, 566.CrossRefGoogle Scholar
Perkins, F. W. & Flick, J. 1971 Phys. Fluids, 14, 2012.CrossRefGoogle Scholar
Porkolab, M. 1974 a Phys. Fluids, 17, 1432.CrossRefGoogle Scholar
Porkolab, M. 1974 b Proceedings of the Symposium on Plasma Heating in Toroidal Devices, Bologna, Italy, p. 28.Google Scholar
Porkolab, M. 1977 Phys. Fluids, 20, 2058.CrossRefGoogle Scholar
Rogister, A. & Hasselberg, G. 1976 Phys. Fluids, 19, 108.CrossRefGoogle Scholar
Rosenbluth, M. N. 1972 Phys. Rev. Lett. 29, 565.CrossRefGoogle Scholar
Schmidt, G. 1976 3rd International Meeting on Theoretical and Experimental Aspects of Heating in Toroidal Plasmas, Grenoble, France, vol. 2, p. 15.Google Scholar
Stix, T. H. 1965 Phys. Rev. Lett. 15, 878.CrossRefGoogle Scholar
Wersinger, J. M., Kritz, A. H. & Troyon, F. 1976 3rd International Meeting on Theoretical and Experimental Aspects of Heating in Toroidal Plasmas, Grenoble, France, vol. 1, p. 169.Google Scholar