Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T04:52:53.295Z Has data issue: false hasContentIssue false

Long-pulse plasma source for SMOLA helical mirror

Published online by Cambridge University Press:  12 March 2021

Ivan A. Ivanov*
Affiliation:
Budker Institute of Nuclear Physics, 11 Lavrentyev av., Novosibirsk630090, Russia
V. O. Ustyuzhanin
Affiliation:
Budker Institute of Nuclear Physics, 11 Lavrentyev av., Novosibirsk630090, Russia Novosibirsk State University, 1 Pirogov st., Novosibirsk630090, Russia
A. V. Sudnikov
Affiliation:
Budker Institute of Nuclear Physics, 11 Lavrentyev av., Novosibirsk630090, Russia
A. Inzhevatkina
Affiliation:
Budker Institute of Nuclear Physics, 11 Lavrentyev av., Novosibirsk630090, Russia
*
Email address for correspondence: [email protected]

Abstract

A plasma gun for forming a plasma stream in the open magnetic mirror trap with additional helicoidal field SMOLA is described. The plasma gun is an axisymmetric system with a planar circular hot cathode based on lanthanum hexaboride and a hollow copper anode. The two planar coils are located around the plasma source and create a magnetic field of up to 200 mT. The magnetic field forms the magnetron configuration of the discharge and provides a radial electric insulation. The source typically operates with a discharge current of up to 350 A in hydrogen. Plasma parameters in the SMOLA device are Ti ~ 5 eV, Te ~ 5–40 eV and ni ~ (0.1–1)  × 1019 m−3. Helium plasma can also be created. The plasma properties depend on the whole group of initial technical parameters: the cathode temperature, the feeding gas flow, the anode-cathode supply voltage and the magnitude of the cathode magnetic insulation.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhmetov, T. D., Davydenko, V. I., Ivanov, A. A., Kreter, A., Mishagin, V. V., Savkin, V. Y., Shulzhenko, G. I. & Unterberg, B. 2016 Arc discharge plasma source with plane segmented LaB6 cathode. Rev. Sci. Instrum. 87, 056106.CrossRefGoogle ScholarPubMed
Anikeev, A. V., et al. 2015 Progress in mirror-based fusion neutron source development. Materials 8, 84528459.CrossRefGoogle ScholarPubMed
Astrelin, V. T. & Kotelnikov, I. A. 2017 Boundary conditions on the plasma emitter surface in the presence of a particle counter flow: I. Ion emitter. Plasma Phys. Rep. 43, 129140.CrossRefGoogle Scholar
Bagryansky, P. A., et al. 2015 Overview of ECR plasma heating experiment in the GDT magnetic mirror. Nucl. Fusion 55, 053009.CrossRefGoogle Scholar
Beklemishev, A. D. 2013 Helicoidal system for axial plasma pumping in linear traps. Fusion Sci. Technol. 63 (1T), 355357.CrossRefGoogle Scholar
Beklemishev, A. D. 2015 Helical plasma thruster. Phys. Plasmas 22, 103506.CrossRefGoogle Scholar
Beklemishev, A. D. 2016 Radial and axial transport in trap sections with helical corrugation. AIP Conf. Proc. 1771 (2016), 040006.CrossRefGoogle Scholar
Binderbauer, M. W., et al. 2015 A high performance field-reversed configuration. Phys. Plasmas 22, 056110.CrossRefGoogle Scholar
Conyers Herring & Nichols, M. H. 1949 Thermionic emission. Rev. Mod. Phys. 21, 185270.Google Scholar
Gekelman, W., et al. 2016 The upgraded large plasma device, a machine for studying frontier basic plasma physics. Rev. Sci. Instrum. 87, 025105.CrossRefGoogle ScholarPubMed
Goebel, D. M., Hirooka, Y. & Sketchley, T. A. 1985 Large area lanthanum hexaboride electron emitter. Rev. Sci. Instrum. 56, 1717.CrossRefGoogle Scholar
Gota, H., et al. 2019 Formation of hot, stable, long-lived field-reversed configuration plasmas on the C-2W device. Nucl. Fusion 59 (11).CrossRefGoogle Scholar
Inzhevatkina, A. A., Burdakov, A. V., Ivanov, I. A., Postupaev, V. V. & Sudnikov, A. V. 2019 Doppler spectroscopy system for the plasma velocity measurements in SMOLA helical mirror. Plasma Fusion Res. 14, 2402020.CrossRefGoogle Scholar
Kreter, A., Brandt, C., Huber, A., Kraus, S., Möller, S., Reinhart, M., Schweer, B., Sergienko, G. & Unterberg, B. 2017 Linear plasma device PSI-2 for plasma-material interaction studies. Fusion Sci. Technol. 68, 814.CrossRefGoogle Scholar
Lafferty, J. M. 1951 Boride cathodes. J. Appl. Phys. 22, 299.CrossRefGoogle Scholar
Postupaev, V. V., Batkin, V. I., Beklemishev, A. D., Burdakov, A. V., Burmasov, V. S., Chernoshtanov, I. S., Gorbovsky, A. I., Ivanov, I. A., Kuklin, K. N. & Mekler, K. I. 2017 The GOL-NB program: further steps in multiple-mirror confinement research. Nucl. Fusion 57, 036012.CrossRefGoogle Scholar
Postupaev, V. V., Sudnikov, A. V., Beklemishev, A. D. & Ivanov, I. A. 2016 Helical mirrors for active plasma flow suppression in linear magnetic traps. Fusion Engng Des. 106, 2933.CrossRefGoogle Scholar
Simonen, T. C., Anikeev, A., Bagryansky, P., Beklemishev, A., Ivanov, A., Lizunov, A., Maximov, V., Prikhodko, V. & Tsidulko, Y. 2010 High beta experiments in the GDT axisymmetric magnetic mirror. J. Fusion Energy 29, 558560.CrossRefGoogle Scholar
Sudnikov, A. V., Beklemishev, A. D., Postupaev, V. V., Burdakov, A. V., Ivanov, I. A., Vasilyeva, N. G., Kuklin, K. N. & Sidorov, E. N. 2017 a SMOLA device for helical mirror concept exploration. Fusion Engng Des. 122, 8693.CrossRefGoogle Scholar
Sudnikov, A. V., Beklemishev, A. D., Postupaev, V. V., Ivanov, I. A., Burdakov, A. V., Inzhevatkina, A. A. & Zhuravlev, N. A. 2017 b Status and program of concept exploration helical mirror device. In Proceedings of the 44th EPS Conference on Plasma Physics, P1.139. Available at: http://ocs.ciemat.es/EPS2017PAP/pdf/P1.139.pdfGoogle Scholar
Sudnikov, A. V., Beklemishev, A. D., Postupaev, V. V., Ivanov, I. A., Inzhevatkina, A. A., Sklyarov, V. F., Burdakov, A. V., Kuklin, K. N., Rovenskikh, A. F. & Melnikov, N. A. 2019 First experimental campaign on SMOLA helical mirror. Plasma Fusion Res. 14, 2402023.CrossRefGoogle Scholar