Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T14:21:15.408Z Has data issue: false hasContentIssue false

Linearized potential of an ion moving through plasma

Published online by Cambridge University Press:  13 March 2009

Thomas Peter
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046 Garching, Federal Republic ofGermany

Abstract

The solution of the linearized Vlasov–Poisson equations describing a projectile ion moving through a classical isotropic electron plasma is investigated analytically and numerically for a wide range of projectile velocities vp Extending the range of earlier computations considerably, our calculations were performed for velocities up to vp = 15vth, showing the wake field behind the ion for distances 0 ≤ d ≤ 200λD, where vth is the thermal electron velocity and λD the Debye length of the plasma. As a new feature, we demonstrate that the amplitude of the wake field in the region vp/vthdD ≤/23(vp/vth)3 is almost undamped, and only for larger distances from the ion does it take the 1/d behaviour shown in other work. Thus the wake field of a single ion persists for much longer than previously thought. The question of whether this effect could have practical consequences, for example, for ion-beam cooling, is briefly addressed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. National Bureau of Standards.Google Scholar
Arnold, R. C. & Meyer-Ter-Vehn, J. 1987 Rep. Prog. Phys. 50, 559.CrossRefGoogle Scholar
Bock, R., Hofmann, I. & Meyer-Ter-Vehn, J. (eds.) 1988 Proceedings of Heavy Ion Inertial Fusion Symposium, Darmstadt, Federal Republic ofGermany, June 1988: Nucl. Instrum. Meth. A 278.Google Scholar
Bohr, N. 1915 Phil. Mag. 30, 581.CrossRefGoogle Scholar
Chen, L., Langdon, A. B. & Lieberman, M. A. 1973 J. Plasma Phys. 9, 311.CrossRefGoogle Scholar
Chenevier, P., Dolique, J. M. & Perès, H. 1973 J. Plasma Phys. 10, 185.CrossRefGoogle Scholar
Cooper, G. 1969 Phys. Fluids, 12, 2707.CrossRefGoogle Scholar
Debye, P. & Hückel, E. 1923 Phys. Z. 24, 185.Google Scholar
Echenique, P. M., Ritchie, R. H. & Brandt, W. 1979 Phys. Rev. B 20, 2567.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1981 Table of Integrais, Series, and Products. Academic.Google Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics. Benjamin.Google Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill.CrossRefGoogle Scholar
Landau, L. D. 1946 J. Phys. USSR, 10, 25.Google Scholar
Montgomery, D., Joyce, G. & Sugihara, R. 1967 Plasma Phys. 10, 681.CrossRefGoogle Scholar
Peter, Th. 1988 Energieverlust von Schwerionenstrahlen in dichten Plasmen. Ph.D. thesis, Technische Universität München and report of the Max-Planck-Institut für Quanten- optik (MPQ 137).Google Scholar
Peter, Th. & Meyer-Ter-Vehn, J. 1989 Nonlinear stopping power ofheavy ions in plasma. Report of the Gesellschaft für Schwerionenforschung Darmstadt GSI-89–21; submitted to Phys. Rev. A.Google Scholar
Rostokeh, N. 1960 Nucl. Fusion, 1, 101.CrossRefGoogle Scholar
Rostoker, N. & Rosenbluth, M. N. 1960 Phys. Fluids, 3, 1.CrossRefGoogle Scholar
Thompson, W. B. & Hubbard, J. 1960 Rev. Mod. Phys. 32, 714.CrossRefGoogle Scholar
Wang, C.-L., Joyce, G. & Nicholson, D. R. 1980 J. Plasma Phys. 25, 225.CrossRefGoogle Scholar