Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T04:37:48.984Z Has data issue: false hasContentIssue false

Linearized expressions for perturbed quantities for propagation at arbitrary angle to the static magnetic field in plasmas with non-uniform density and thermal anisotropy

Published online by Cambridge University Press:  13 March 2009

R. Koch
Affiliation:
Plasma Physics Laboratory, ‘Euratom’, Royal Military Academy, 1040 Brussels

Abstract

This paper is concerned with the derivation of linear wave equations for nonuniform magnetized Vlasov plasmas. By the operator method it is shown that a close connection exists between the case of perpendicular propagation and the general one. Combining this with previous results, expressions for the perturbed density and velocity are derived for the case of propagation at any angle to the uniform static magnetic field in a two-temperature Maxwellian plasma. These results apply for arbitrary inhomogeneities of equilibrium density and temperatures in directions perpendicular to the static magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azevedo, J. C. 1966 Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
Azevedo, J. C. & Vianna, M. L. 1969 Phys. Rev. 177, 301.Google Scholar
Baldwin, D. E. 1967 J. Plasma Phys. 1, 289.Google Scholar
Bernstein, I. B. 1958 Phys. Rev. 109, 10.Google Scholar
Buchsbaum, S. J. & Hasegawa, A. 1964 Phys. Rev. Lett. 12, 685.Google Scholar
Buchsbaum, S. J. & Hasegawa, A. 1966 Phys. Rev. 143, 303.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The plasma dispersion function. Academic.Google Scholar
Gross, E. P. 1951 Phys. Rev. 82, 232.CrossRefGoogle Scholar
Landau, L. D. 1946 J. Phys. U.S.S.R. 10, 25.Google Scholar
Monfort, J. L. 1970 D.Sc. Thesis, University of Liège.Google Scholar
Monfort, J. L. & Vandenplas, P. E. 1970 Phys. Lett. 31A, 11.Google Scholar
Monfort, J. L. & Vandenplas, P. E. 1972 Transport Theory and Statistical Physics, 2, 1.CrossRefGoogle Scholar
Pearson, G. A. 1966 Phys. Fluids, 9, 2455.CrossRefGoogle Scholar
Sen, H. K. 1952 Phys. Rev. 88, 816.Google Scholar
Sitenko, A. G. & Stepanov, K. N. 1957 Soviet Phys. JETP, 4, 512.Google Scholar
Sivasubramanian, A. & Tang, T. W. 1972 Phys. Rev. 6, 2257.Google Scholar
Stix, T. H.. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar