Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T00:29:13.195Z Has data issue: false hasContentIssue false

Linear electrostatic waves in two-temperature electron–positron plasmas

Published online by Cambridge University Press:  04 May 2012

I. J. LAZARUS
Affiliation:
Department of Physics, Durban University of Technology, Durban, South Africa
R. BHARUTHRAM
Affiliation:
University of the Western Cape, Modderdam Road, Bellville 7530, South Africa
S. V. SINGH
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai, India ([email protected]) School of Physics, University of KwaZulu-Natal, Durban, South Africa
S. R. PILLAY
Affiliation:
School of Physics, University of KwaZulu-Natal, Durban, South Africa
G. S. LAKHINA
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai, India ([email protected])

Abstract

Linear electrostatic waves in a magnetized four-component, two-temperature electron–positron plasma are investigated, with the hot species having the Boltzmann density distribution and the dynamics of cooler species governed by fluid equations with finite temperatures. A linear dispersion relation for electrostatic waves is derived for the model and analyzed for different wave modes. Analysis of the dispersion relation for perpendicular wave propagation yields a cyclotron mode with contributions from both cooler and hot species, which in the absence of hot species goes over to the upper hybrid mode of cooler species. For parallel propagation, both electron-acoustic and electron plasma modes are obtained, whereas for a single-temperature electron–positron plasma, only electron plasma mode can exist. Dispersion characteristics of these modes at different propagation angles are studied numerically.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berezhiani, V. I. and Mahajan, S. M. 1995 Phys. Rev. E 52, 1968.Google Scholar
Bharuthram, R. 1992 Astrophys. Space Sci. 189, 213.CrossRefGoogle Scholar
Bhattacharyya, R., Janaki, M. S. and Dasgupta, B. 2003 Phys. Letts. A 315, 120.CrossRefGoogle Scholar
Esfandyari-Kalejahi, A., Kourakis, I. and Shukla, P. K. 2006 Phys. Plasmas 13, 122310.CrossRefGoogle Scholar
Fonseca, R. A., Silva, L. O., Tonge, J. W., Mori, W. B. and Dawson, J. M. 2003 Phys. Plasmas 10, 1979.CrossRefGoogle Scholar
Greaves, R. G., Tinkle, M. D. and Surko, C. M. 1994 Phys. Plasmas 1, 1439.CrossRefGoogle Scholar
Greaves, R. G. and Surko, C. M. 1995 Phys. Rev. Lett. 75, 3846.CrossRefGoogle Scholar
Hasegawa, A. 1975 Plasma Instabilities and Nonlinear Effects. Berlin, Germany: Springer-Verlage, 194 pp.CrossRefGoogle Scholar
Iwamoto, N. 1993 Phys. Rev. E 47, 604.Google Scholar
Kourakis, I. and Saini, N. S. 2010 J. Plasma Phys. 76, 607.CrossRefGoogle Scholar
Lakhina, G. S. and Verheest, F. 1997 Astrophys. Space Sci. 253, 97.CrossRefGoogle Scholar
Lazarus, I. J., Bharuthram, R. and Hellberg, M. A. 2008 J. Plasma Physics 74, 519.CrossRefGoogle Scholar
Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Phys. Rev. Lett. 81, 4887.CrossRefGoogle Scholar
Lontano, M., Bulanov, S. and Koga, J. 2001 Phys. Plasmas 8, 5113.CrossRefGoogle Scholar
Luo, Q. 1998 Brazilian J. Phys. 28, 191.CrossRefGoogle Scholar
Machabeli, G. Z., Osmanov, Z. N. and Mahajan, S. M. 2005 Phys. Plasmas 12, 062901.CrossRefGoogle Scholar
Matsukiyo, S. and Hada, T. 2003 Phys. Rev. E 67, 046406.Google Scholar
Nishikawa, K. I., Hardee, P. E., Hededal, C. B. and Fishman, G. J. 2006 Ap. J. 642, 1267.CrossRefGoogle Scholar
Pillay, R. and Bharuthram, R. 1992 Astrophys. Space Sci. 198, 85.CrossRefGoogle Scholar
Saeed, R. and Mushtaq, A. 2009 Phys. Plasmas 16, 032307.CrossRefGoogle Scholar
Shatashvili, N. L., Javakhishvili, J. I. and Kaya, H. 1997 Astrophys. Space Sci. 250, 109.CrossRefGoogle Scholar
Shukla, N. and Shukla, P. K. 2007 Phys. Lett. A 367, 120.CrossRefGoogle Scholar
Singh, S. V. and Lakhina, G. S., 2001 Planet. Space Sci. 49, 107.CrossRefGoogle Scholar
Stewart, G. A. and Laing, E. W. 1992 J. Plasma Phys. 47, 295.CrossRefGoogle Scholar
Sturrock, P. A. 1971 Ap. J. 162, 529.CrossRefGoogle Scholar
Surko, C. M. and Murphy, T. J. 1990 Phys. Fluids B 2, 1372.CrossRefGoogle Scholar
Surko, C. M., Leventhal, M. and Passner, A. 1989 Phys. Rev. Lett. 62, 901.CrossRefGoogle Scholar
Tokar, R. L. and Gary, S. P. 1984 Geophys. Res. Lett. 11, 1180.CrossRefGoogle Scholar
Tribeche, M., Aoutou, K., Younsi, S. and Amour, R. 2009 Phys. Plasmas 16, 072103.CrossRefGoogle Scholar
Trivelpiece, A. W. 1972 Comments Plasma Phys. Control. Fusion 1, 57.Google Scholar
Verheest, F., Hellberg, M. A., Gray, G. J. and Mace, R. L. 1996 Astrophys. Space Sci. 239, 125.CrossRefGoogle Scholar
Yu, M. Y., Shukla, P. K. and Rao, N. N. 1984 Astrophys. Space Sci. 107, 327.CrossRefGoogle Scholar
Zank, G. P. and Greaves, R. G. 1995 Phys. Rev. E 51, 6079.Google Scholar
Zhao, J., Sakai, J. I. and Nishikawaa, K.-I. 1996 Phys. Plasmas 3, 844.CrossRefGoogle Scholar