Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T04:31:29.357Z Has data issue: false hasContentIssue false

Linear and nonlinear properties of an obliquely propagating dust magnetosonic wave

Published online by Cambridge University Press:  01 April 2009

W. MASOOD
Affiliation:
Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad, Pakistan
H. A. SHAH
Affiliation:
Department of Physics, GC University, Lahore, Pakistan
A. MUSHTAQ
Affiliation:
Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad, Pakistan
M. SALIMULLAH
Affiliation:
Department of Physics, GC University, Lahore, Pakistan SalamChair, GC University, Lahore, Pakistan

Abstract

Linear and nonlinear properties of the two-dimensional obliquely propagating dust magnetosonic wave are studied in a three-component dusty plasma. The dispersion relations in the linear and Kadomstev–Petviashvili (KP) equation in the nonlinear regime are derived for small-amplitude perturbations. It is shown that the linear dispersion properties of the low-frequency dust magnetosonic wave depend on the angle θ that the magnetic field makes with the x-axis, the ratio of ion to electron concentration, and the plasma beta. It is found that retaining the electron pressure term gives rise to novel features in the dust magnetosonic wave. The slow magnetosonic wave is found to be the damped mode and, therefore, the only propagating mode in our system is the fast magnetosonic mode. It is found that the KP equation admits compressive solitary structures. Finally, it is found that the amplitude of the soliton increases as the ratio of electron to ion concentration, p, angle θ, and the plasma beta, β, is increased.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Goertz, C. K. 1989 Rev. Geophys. 27, 271.CrossRefGoogle Scholar
[2]Verheest, F. 1996 Space Sci. Rev. 77, 267CrossRefGoogle Scholar
Shukla, P. K. 2001 Phys. Plasmas 8, 1791.CrossRefGoogle Scholar
[3]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.CrossRefGoogle Scholar
[4]Mushtaq, A., Shah, H. A., Rubab, N. and Murtaza, G. 2006 Phys. Plasmas 13, 62903.CrossRefGoogle Scholar
[5]Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet Space Sci. 38, 543.CrossRefGoogle Scholar
[6]Melandso, F. 1996 Phys. Plasmas 3, 3890.CrossRefGoogle Scholar
[7]Misra, A. P. and Roychowdhury, A. 2006 Phys. Plasmas 13, 062307CrossRefGoogle Scholar
Salimullah, M. 1996 Phys. Lett. A 215, 296.CrossRefGoogle Scholar
[8]Shukla, P. K. and Mamun, A. A. 2003 New J. Phys. 5, 1.Google Scholar
[9]Adlam, J. H. and Allen, J. E. 1958 Philos. Mag. 3, 448.CrossRefGoogle Scholar
[10]Davis, L., Lust, R. and Schuluter, A. 1958 Z. Naturforsch. A 13a, 916.CrossRefGoogle Scholar
[11]Gardener, C. S. and Morikawa, G. K. 1965 Commun. Pure Appl. Math. 18, 35.CrossRefGoogle Scholar
[12]Berezin, Y. A. and Karpman, V. I. 1964 Sov. Phys. JETP 46, 1880.Google Scholar
[13]Kakutani, T. and Ono, H. 1969 J. Phys. Soc. Japan 26, 1305.CrossRefGoogle Scholar
[14]Maruyama, K., Bessho, N. and Oshawa, Y. 1998 Phys. Plasma 5, 3257.CrossRefGoogle Scholar
[15]De Juli, M. C. and Schneider, R. S. 2000 J. Plasma Physics 64, 57.CrossRefGoogle Scholar
[16]Brodin, G., Stenflo, L. and Shukla, P. K. 2003 J. Plasma Physics 69, 183.CrossRefGoogle Scholar
[17]Mushtaq, A. and Shah, H. A. 2005 Phys. Plasma 12, 12301.CrossRefGoogle Scholar
[18]Shukla, P. K. and Rahman, H. U. 1996 Phys. Plasma 03, 430.CrossRefGoogle Scholar
[19]KhurshidAlam, Md. Alam, Md., Roy Chowdhury, A. and Paul, S. N. 1999 Int. J. Theoret. Phys. 38, 757.Google Scholar
[20]Marklund, M., Stenflo, L. and Shukla, P. K. Magnetosonic solitons in a dusty plasma slab. Phys. Plasma (submitted).Google Scholar
[21]Rao, N. N. 1997 Advances in Dusty Plasmas (ed. Shukla, P. K., Mendis, D. A. and Desai, T.). Singapore: World Scientific, p. 41.Google Scholar
[22]Taniuti, T. and Wei, C. C. 1968 J. Phys. Soc. Japan 24, 941.CrossRefGoogle Scholar
[23]Taniuti, T. and Yajima, N. 1969 J. Math. Phys. 10, 1369.CrossRefGoogle Scholar
[24]Jeffrey, A. and Kakutani, T. 1972 SIAM Rev. 14, 582.CrossRefGoogle Scholar
[25]Kakutani, T. 1974 Suppl. Prog. Theor. Phys. 55, 97.CrossRefGoogle Scholar
[26]Taniuti, T. and Washima, H. 1969 Phys. Rev. Lett. 21, 209.CrossRefGoogle Scholar
[27]Jeffrey, A. and Kawahara, T. 1982 Asymptotic Methods in Nonlinear Wave Theory. Boston: Pitman.Google Scholar
[28]Shu, C. H. and Gardener, C. S. 1969 J. Math. Phys. 10, 536.Google Scholar
[29]De Vito, M. and Pantano, P. 1984 Lett. Nuovo Cimento Soc. Ital. Fis. 40, 58.CrossRefGoogle Scholar
[30]Satsuma, J. 1976 J. Phys. Soc. Japan 40, 286.CrossRefGoogle Scholar
[31]Shah, H. A. and Bruno, R. 1987 J. Plasma Physics 37, 143.CrossRefGoogle Scholar
[32]Alexandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. Berlin: Springer.CrossRefGoogle Scholar
[33]Ohsawa, Y. 1986 Phys. Fluids 29, 1844; 1985 Phys. Fluids 28, 2130.CrossRefGoogle Scholar
[34]Lembege, B. and Dawson, J. M. 1984 Phys. Rev. Lett. 53, 1053CrossRefGoogle Scholar
Lembege, B., Ratliff, S. T., Dawson, J. M. and Ohsawa, Y. 1984 Phys. Rev. Lett. 52, 1500.Google Scholar
[35]Ohsawa, Y. 1985 J. Phys. Soc. Japan 54, 4073.CrossRefGoogle Scholar
[36]Jancel, R. and Stenflo, L. 1978 Phys. Scr. 17, 533CrossRefGoogle Scholar
Suzuki, T., Ito, A. and Yoshida, Z. 2003 Fluid Dyn. Res. 32, 247.CrossRefGoogle Scholar
[37]de Baar, M. R., Thyagaraja, A., Hogeweij, G. M. D., Knight, P. J. and Min, E. 2005 Phys. Rev. Lett. 94, 35002.CrossRefGoogle Scholar