Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T07:41:21.289Z Has data issue: false hasContentIssue false

Linear analysis of 170 GHz cylindrical and confocal gyrotron

Published online by Cambridge University Press:  17 August 2016

Youwei Yang*
Affiliation:
Terahertz Science and Technology Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
Sheng Yu
Affiliation:
Terahertz Science and Technology Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
*
Email address for correspondence: [email protected]

Abstract

In this paper, the mode density, coupling coefficient, eigenfrequencies, quality factors and starting currents of a 170 GHz cylindrical and confocal gyrotron are studied based on the linear theory. Results show that the mode density in the confocal cavity greatly decrease due to the diffraction properties. Modes in the confocal cavity have lower quality factors than the modes in cylindrical cavity, hence the starting currents are higher than the latter. The confocal gyrotron is more stable than the cylindrical gyrotron when operating at large current. Meanwhile, through altering the mirror width, quality factors together with the starting current of the confocal modes are adjustable.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andronov, A. A., Flyagin, V. A., Gaponov, A. V., Gol’denberg, A. L., Petelin, M. I., Usov, V. G. & Yulpatov, V. K. 1978 The gyrotron: high power sources of millimetre and submillimetre. Infrared Phys. 18 (5), 385393.Google Scholar
Bernstein, I. B., Divringi, L. K. & Smith, T. M. 1982 The theory of irregular waveguides and open resonators. Intl J. Infrared Millimeter Waves 4 (1), 57117.Google Scholar
Boyd, G. D. & Gordon, J. P. 1961 Confocal multimode resonator for millimeter through optical wavelength masers. Bell Syst. Tech. J. 40 (2), 489508.Google Scholar
Brand, G. F., Ideharaj, T., Tatsukawa, T. & Ogawa, I. 1992 Mode competition in a high harmonic gyrotron. Intl J. Electron. 72 (5–6), 745758.Google Scholar
Borie, E. & Jodicke, B. 1987 Startup and mode competition in a 150 GHz gyrotron. Intl J. Infrared Millimeter Waves 8 (3), 207226.Google Scholar
Borie, E. & Jodicke, B. 1988 Comments on the linear theory of the gyrotron. IEEE Trans. Plasma Sci. 16 (2), 116121.Google Scholar
Borie, E. & Jodicke, B. 1992 Self-consistent theory of mode competition for gyrotrons. Intl J. Electron. 72 (5–6), 721744.Google Scholar
Clarke, R. N. & Rosenberg, C. B. 1982 Fabry–Perot and open resonators at microwave and millimeter wave frequencies, 2–300 GHz. J. Phys. E 15 (1), 924.Google Scholar
Derfler, H., Grant, T. J. & Stone, D. S. 1982 Loaded $Q$ ’s and field profiles of tapered axisymmetric gyrotron cavities. IEEE Trans. Electron Dev. 29 (12), 19171929.Google Scholar
Dumbrajs, O., Nusinovich, G. S. & Pavelyev, A. B. 1988 Mode competition in a gyrotron with tapered external magnetic field. Intl J. Electron. 64 (1), 137145.Google Scholar
Fliflet, A. W., Hargreaves, T. A., Fischer, R. P., Manheimer, W. M. & Sprangle, P. 1990 Review of quasi-optical gyrotron development. J. Fusion Energy 9 (1), 3158.Google Scholar
Fliflet, A. W. & Read, M. E. 1981 Use of weakly irregular waveguide theory to calculate eigenfrequencies, $Q$ -values and RF field functions for gyrotron oscillators. Intl J. Electron. 51 (4), 475484.Google Scholar
Flyagin, V. A., Luchinin, A. G. & Nusinovich, G. S. 1983 Submillimeter-wave gyrotrons: theory and experiment. Intl J. Infrared Millimeter Waves 4 (4), 629637.Google Scholar
Gaponov, A. V., Flyagin, V. A., Gol’denberg, A. L., Nusinovich, G. S., Tsimring, Sh. E., Usov, V. G. & Vlasov, S. N. 1981 Powerful millimetre-wave gyrotrons. Intl J. Electron. 51 (4), 277302.Google Scholar
Gold, S. H. & Nusinovich, G. S. 1997 Review of high-power microwave source research. Rev. Sci. Instrum. 68 (11), 39453974.Google Scholar
Hu, W., Shapiro, M. A., Kreischer, K. E. & Temkin, R. J. 1998 140-GHz gyrotron experiments based on a confocal cavity. IEEE Trans. Plasma Sci. 26 (3), 366374.Google Scholar
Joye, C. D., Shapiro, M. A., Sirigiri, J. R. & Temkin, R. J. 2009 Demonstration of a 140-GHz 1-kW confocal gyro-traveling-wave amplifier. IEEE Trans. Electron Dev. 56 (5), 818827.Google Scholar
Kao, S. H., Chiu, C. C., Pao, K. F. & Chu, K. R. 2011 Competition between harmonic cyclotron maser interactions in the terahertz regime. Phys. Rev. Lett. 107 (13), 135101.Google Scholar
Kreischer, K. E. & Temkin, R. J. 1980 Linear theory of an electron cyclotron maser operating at the fundamental. Intl J. Infrared Millimeter Waves 1 (2), 195223.CrossRefGoogle Scholar
Nusinovich, G. S. 1981 Mode interaction in gyrotrons. Intl J. Electron. 51 (4), 457474.Google Scholar
Nusinovich, G. S. 1988 Linear theory of a gyrotron with weakly tapered magnetic field. Intl J. Electron. 64 (1), 127135.Google Scholar
Nusinovich, G. S. 1999 Review of the theory of mode interaction in gyrodevices. IEEE Trans. Plasma Sci. 27 (2), 313326.Google Scholar
Perrenoud, A., Tran, T. M., Tran, M. Q., Rieder, C., Schleipen, M. & Bondeson, A. 1984 Open resonator for quasi-optical gyrotrons: structure of the modes and their influence. Intl J. Electron. 57 (6), 9851001.Google Scholar
Sirigiri, J. R., Shapiro, M. A. & Temkin, R. J. 2003 High-power 140-GHz quasioptical gyrotron traveling-wave amplifier. Phys. Rev. Lett. 90 (25), 258302.Google Scholar
Thumm, M. 2001 Novel applications of millimeter and submillimeter wave gyro-devices. Intl J. Infrared Millimeter Waves 22 (3), 377386.Google Scholar
Thumm, M. 2014 Recent advances in the worldwide fusion gyrotron development. IEEE Trans. Plasma Sci. 42 (3), 590598.Google Scholar