Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T08:51:03.076Z Has data issue: false hasContentIssue false

Laser-driven generation of high-quality ultra-relativistic positron beams

Published online by Cambridge University Press:  06 November 2014

G. Sarri*
Affiliation:
School of Mathematics and Physics, The Queen's University of Belfast, BT7 1NN, Belfast, UK
*
Email address for correspondence: [email protected]

Abstract

An ultra-relativistic electron beam propagating through a high-Z solid triggers an electromagnetic cascade, whereby a large number of high-energy photons and electron–positron pairs are produced mainly via the bremsstrahlung and Bethe–Heitler processes, respectively. These mechanisms are routinely used to generate positron beams in conventional accelerators such as the electron–positron collider (LEP). Here we show that the application of similar physical mechanisms to a laser-driven electron source allows for the generation of high-quality positron beams in a much more compact and cheaper configuration. We anticipate that the application of these results to the next generation of lasers might open the pathway for the realization of an all-optical high-energy electron–positron collider.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Battistoni, G.et al. 2007 AIP Conf. Proc. 896, 31.Google Scholar
Beresteskii, V. B., Lifshitz, E. M. and Pitaevskii, L. P. 2008 Quantum Electrodynamics, Oxford: Butterworth–Heinemann.Google Scholar
Blue, B. E.et al. 2003 Phys. Rev. Lett. 90, 214 801.CrossRefGoogle Scholar
Blumenfeld, I.et al. 2007 Nature (London) 445, 741.Google Scholar
Bossart, R.et al. 1990 Report No. CERN-PS-90-56-LP.Google Scholar
Chen, H., Wilks, S., Bonlie, J., Liang, E., Myatt, J., Price, D., Meyerhofer, D. and Beiersdorfer, P. 2009 Phys. Rev. Lett. 102, 105 001.CrossRefGoogle Scholar
Chen, H.et al. 2010 Phys. Rev. Lett. 105, 015 003.Google Scholar
Esarey, E., Schroeder, C. B. and Leemans, W. P. (2009)Rev. Mod. Phys. 81, 1229.CrossRefGoogle Scholar
Gahn, C., Tsakiris, G. D., Pretzler, G., Witte, K. J., Thirolf, P., Habs, D., Delfin, C. and Wahlstrom, C.-G. 2002 Phys. Plasmas 9, 987.Google Scholar
Heitler, W. 1954 The Quantum Theory of Radiation, Oxford: Clarendon Press.Google Scholar
Karsch, S.et al. 2007 New J. Phys. 9, 415.CrossRefGoogle Scholar
Koch, H. W. and Motz, J. 1959 Rev. Mod. Phys. 31, 920.CrossRefGoogle Scholar
Leemans, W. P.et al. 2006 Nature Phys. 2, 696.Google Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F., Mori, W., Vieira, J., Fonseca, R. and Silva, L. 2007 Phys. Rev. ST Accel. Beams 10, 061 301.Google Scholar
Lundh, O.et al. 2011 Nature Phys. 7, 219.CrossRefGoogle Scholar
Mangles, S. P. D.et al. 2006 Phys. Rev. Lett. 96, 215 001.CrossRefGoogle Scholar
Ng, J. S. T.et al. 2001 Phys. Rev. Lett. 87, 244 801.CrossRefGoogle Scholar
Rossi, B. 1952 High-Energy Particles, New York: Prentice-Hall).Google Scholar
Sarri, G.et al. 2013a Phys. Rev. Lett. 110, 255 002.CrossRefGoogle Scholar
Sarri, G.et al. 2013b Plasma Phys. Control. Fusion 55, 124 017.Google Scholar
Scott, W. T. 1963 Rev. Mod. Phys. 39, 231.CrossRefGoogle Scholar
Yanovsky, V.et al. 2008 Opt. Express 16, 2109.CrossRefGoogle Scholar