Published online by Cambridge University Press: 03 January 2013
For the considered scheme of the external electron bunch injection in front of a laser pulse, the influence of the nonlinear driving laser pulse dynamics and electron bunch self-action to the processes of electron bunch compression and acceleration in the laser wakefield is analyzed. Self-consistent modelling results confirm that the nonlinear laser pulse dynamics limits the bunch compression due to variations of the phase velocity of the wake. A growth of the injected bunch charge leads to some extent to an increase of the trapped and accelerated bunch charge and to decrease of the trapped bunch radius and emittance due to increased self-focusing bunch. The three-dimensional theoretical model is elaborated and used to describe the propagation of laser pulses in dielectric capillary waveguides under imperfect coupling and focusing conditions with broken cylindrical symmetry. The role of cone entrances to the cylindrical part of a capillary is analyzed, and it is demonstrated that matching cones can considerably increase the transmission of laser pulses through the capillary, but cannot mitigate the requirements on the precision of the laser pulse focusing into a capillary. In order to avoid a speckle structure and strong transverse gradients of the fields, which can prevent the process of regular electron bunch acceleration, one has to ensure a small laser angle of incidence into the capillary not exceeding 1 mrad.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.