Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T02:15:36.980Z Has data issue: false hasContentIssue false

Laminar and turbulent plasmoid ejection in a laboratory Parker Spiral current sheet

Published online by Cambridge University Press:  05 August 2021

Ethan E. Peterson*
Affiliation:
Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA
Douglass A. Endrizzi
Affiliation:
Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
Michael Clark
Affiliation:
Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
Jan Egedal
Affiliation:
Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
Kenneth Flanagan
Affiliation:
Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
Nuno F. Loureiro
Affiliation:
Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA
Jason Milhone
Affiliation:
Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
Joseph Olson
Affiliation:
Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
Carl R. Sovinec
Affiliation:
Engineering Physics Department, University of Wisconsin–Madison, Madison, WI 53706, USA
John Wallace
Affiliation:
Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
Cary B. Forest
Affiliation:
Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
*
Email address for correspondence: [email protected]

Abstract

Quasi-periodic plasmoid formation at the tip of magnetic streamer structures is observed to occur in experiments on the Big Red Ball as well as in simulations of these experiments performed with the extended magnetohydrodynamics code, NIMROD. This plasmoid formation is found to occur on a characteristic time scale dependent on pressure gradients and magnetic curvature in both experiment and simulation. Single mode, or laminar, plasmoids exist when the pressure gradient is modest, but give way to turbulent plasmoid ejection when the system drive is higher, which produces plasmoids of many sizes. However, a critical pressure gradient is also observed, below which plasmoids are never formed. A simple heuristic model of this plasmoid formation process is presented and suggested to be a consequence of a dynamic loss of equilibrium in the high-$\beta$ region of the helmet streamer. This model is capable of explaining the periodicity of plasmoids observed in the experiment and simulations, and produces plasmoid periods of 90 minutes when applied to two-dimensional models of solar streamers with a height of $3R_\odot$. This is consistent with the location and frequency at which periodic plasma blobs have been observed to form by Large Angle and Spectrometric Coronograph and Sun Earth Connection Coronal and Heliospheric Investigation instruments.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antiochos, S.K., DeVore, C.R., Karpen, J.T. & Mikić, Z. 2007 Structure and dynamics of the Sun's open magnetic field. Astrophys. J. 671 (1), 936946.CrossRefGoogle Scholar
Antiochos, S.K., Mikić, Z., Titov, V.S., Lionello, R. & Linker, J.A. 2011 A model for the sources of the slow solar wind. Astrophys. J. 731 (2), 112.CrossRefGoogle Scholar
Attico, N., Califano, F. & Pegoraro, F. 2000 Fast collisionless reconnection in the whistler frequency range. Phys. Plasmas 7 (6), 23812387.CrossRefGoogle Scholar
Bale, S.D., et al. 2019 Highly structured slow solar wind emerging from an equatorial coronal hole. Nature 576 (7786), 237242.CrossRefGoogle ScholarPubMed
Bavassano, B. & Bruno, R. 1989 a Evidence of local generation of Alfvénic turbulence in the solar wind. J. Geophys. Res. 94 (A9), 11977.CrossRefGoogle Scholar
Bavassano, B. & Bruno, R. 1989 b Large-scale solar wind fluctuations in the inner heliosphere at low solar activity. J. Geophys. Res. 94 (A1), 168.CrossRefGoogle Scholar
Bavassano, B., Dobrowolny, M., Mariani, F. & Ness, N.F. 1982 Radial evolution of power spectra of interplanetary Alfvénic turbulence. J. Geophys. Res. 87 (A5), 3617.CrossRefGoogle Scholar
Bavassano, B., Woo, R. & Bruno, R. 1997 Heliospheric plasma sheet and coronal streamers. Geophys. Res. Lett. 24 (13), 16551658.CrossRefGoogle Scholar
Belcher, J.W. & Davis, L. 1971 Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76 (16), 35343563.CrossRefGoogle Scholar
Bhat, P. & Loureiro, N.F. 2018 Plasmoid instability in the semi-collisional regime. J. Plasma Phys. 84 (6). arXiv:1804.05145.CrossRefGoogle Scholar
Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K. & Eyles, C.J. 1995 The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162 (1–2), 357402.CrossRefGoogle Scholar
Coleman, P.J. Jr. 1968 Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371.CrossRefGoogle Scholar
Cranmer, S.R., Gibson, S.E. & Riley, P. 2017 Origins of the ambient solar wind: implications for space weather. Space Sci. Rev. 212 (3-4), 13451384.CrossRefGoogle Scholar
Crooker, N.U., Shodhan, S., Gosling, J.T., Simmerer, J., Lepping, R.P., Steinberg, J.T. & Kahler, S.W. 2000 Density extremes in the solar wind. Geophys. Res. Lett. 27 (23), 37693772.CrossRefGoogle Scholar
DeForest, C.E., Howard, R.A., Velli, M., Viall, N. & Vourlidas, A. 2018 The highly structured outer solar corona. Astrophys. J. 862 (1), 18.CrossRefGoogle Scholar
Di Matteo, S., Viall, N.M., Kepko, L., Wallace, S., Arge, C.N. & MacNeice, P. 2019 Helios observations of quasiperiodic density structures in the slow solar wind at 0.3, 0.4, and 0.6 AU. J. Geophys. Res.: Space Phys. 124 (2), 837860.CrossRefGoogle ScholarPubMed
Einaudi, G., Boncinelli, P., Dahlburg, R.B. & Karpen, J.T. 1999 Formation of the slow solar wind in a coronal streamer. J. Geophys. Res.: Space Physics 104 (A1), 521534.CrossRefGoogle Scholar
Einaudi, G., Chibbaro, S., Dahlburg, R.B. & Velli, M. 2001 Plasmoid formation and acceleration in the solar streamer belt. Astrophys. J. 547 (2), 11671177.CrossRefGoogle Scholar
Endeve, E., Holzer, T.E. & Leer, E. 2004 Helmet streamers gone unstable: two-fluid magnetohydrodynamic models of the solar corona. Astrophys. J. 603 (1), 307321.CrossRefGoogle Scholar
Endeve, E., Leer, E. & Holzer, T.E. 2003 Two–dimensional magnetohydrodynamic models of the solar corona: mass loss from the streamer belt. Astrophys. J. 589 (2), 10401053.CrossRefGoogle Scholar
Endrizzi, D., Egedal, J., Clark, M., Flanagan, K., Greess, S., Milhone, J., Millet-Ayala, A., Olson, J., Peterson, E.E., Wallace, J. & Forest, C.B. 2021 Laboratory resolved structure of supercritical perpendicular shocks. Phys. Rev. Lett. 126, 145001.CrossRefGoogle ScholarPubMed
Fisk, L.A. 2003 Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. 108 (A4), 1157.CrossRefGoogle Scholar
Fisk, L.A., Schwadron, N.A. & Zurbuchen, T.H. 1998 On the slow solar wind. Space Sci. Rev. 86 (1/4), 5160.CrossRefGoogle Scholar
Flanagan, K., Milhone, J., Egedal, J., Endrizzi, D., Olson, J., Peterson, E.E., Sassella, R. & Forest, C.B. 2020 Weakly magnetized, hall dominated plasma Couette flow. Phys. Rev. Lett. 125, 135001.CrossRefGoogle ScholarPubMed
Forest, C.B., et al. 2015 The Wisconsin plasma astrophysics laboratory. J. Plasma Phys. 81 (5), 345810501.CrossRefGoogle Scholar
Fu, H., Madjarska, M.S., Xia, L.D., Li, B., Huang, Z.H. & Wangguan, Z. 2017 Charge states and FIP bias of the solar wind from coronal holes, active regions, and quiet Sun. Astrophys. J. 836 (2), 169.CrossRefGoogle Scholar
Hare, J.D., Suttle, L., Lebedev, S.V., Loureiro, N.F., Ciardi, A., Burdiak, G.C., Chittenden, J.P., Clayson, T., Garcia, C., Niasse, N., Robinson, T., Smith, R.A., Stuart, N., Suzuki-Vidal, F., Swadling, G.F., Ma, J., Wu, J. & Yang, Q. 2017 Anomalous heating and plasmoid formation in a driven magnetic reconnection experiment. Phys. Rev. Lett. 118, 085001.CrossRefGoogle Scholar
Higginson, A.K. & Lynch, B.J. 2018 Structured slow solar wind variability: streamer-blob flux ropes and torsional Alfvén waves. Astrophys. J. 859 (1), 6.CrossRefGoogle Scholar
Kepko, L. & Spence, H.E. 2003 Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J. Geophys. Res. 108 (A6), 1257.CrossRefGoogle Scholar
Kepko, L., Spence, H.E. & Singer, H.J. 2002 ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett. 29 (8), 39-139-4.CrossRefGoogle Scholar
Kepko, L., Viall, N.M., Antiochos, S.K., Lepri, S.T., Kasper, J.C. & Weberg, M. 2016 Implications of L1 observations for slow solar wind formation by solar reconnection. Geophys. Res. Lett. 43 (9), 40894097.CrossRefGoogle Scholar
Köhnlein, W. 1996 Radial dependence of solar wind parameters in the ecliptic (1.1 $R_\odot$ - 61AU). Solar Phys. 169 (1), 209213.CrossRefGoogle Scholar
Lapenta, G. & Knoll, D.A. 2005 Effect of a converging flow at the streamer cusp on the genesis of the slow solar wind. Astrophys. J. 624 (2), 10491056.CrossRefGoogle Scholar
Lavraud, B., et al. 2020 The heliospheric current sheet and plasma sheet during parker solar probe's first orbit. Astrophys. J. 894 (2), L19.CrossRefGoogle Scholar
Loureiro, N.F., Samtaney, R., Schekochihin, A.A. & Uzdensky, D.A. 2012 Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas. Phys. Plasmas 19 (4), 042303042303. arXiv:1108.4040.CrossRefGoogle Scholar
Luttrell, A.H. & Richter, A.K. 1987 The role of Alfvenic fluctuations in MHD turbulence evolution between 0.3 and 1.0 AU. In Sixth International Solar Wind Conference, Proceedings of the conference held 23–28 August, 1987 at YMCA of the Rockies, Estes Park, Colorado (ed. V. J. Pizzo, T. Holzer and D. G. Sime). NCAR Technical Note NCAR/TN-306+Proc, Volume 2, 1987, p. 335.Google Scholar
Marsch, E. & Tu, C.-Y. 1990 a On the radial evolution of MHD turbulence in the inner heliosphere. J. Geophys. Res. 95 (A6), 8211.CrossRefGoogle Scholar
Marsch, E. & Tu, C.-Y. 1990 b Spectral and spatial evolution of compressible turbulence in the inner solar wind. J. Geophys. Res. 95 (A8), 11945.CrossRefGoogle Scholar
Neugebauer, M., Reisenfeld, D. & Richardson, I.G. 2016 Comparison of algorithms for determination of solar wind regimes. J. Geophys. Res.: Space Phys. 121 (9), 82158227.CrossRefGoogle Scholar
Neugebauer, M. & Snyder, C.W. 1962 Solar plasma experiment. Science 138 (3545), 10951097.CrossRefGoogle ScholarPubMed
Olson, J., Egedal, J., Greess, S., Myers, R., Clark, M., Endrizzi, D., Flanagan, K., Milhone, J., Peterson, E., Wallace, J., Weisberg, D. & Forest, C.B. 2016 Experimental demonstration of the collisionless plasmoid instability below the ion kinetic scale during magnetic reconnection. Phys. Rev. Lett. 116 (25), 15.CrossRefGoogle ScholarPubMed
Parker, E.N. 1958 Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664676.CrossRefGoogle Scholar
Peterson, E.E., Endrizzi, D.A., Beidler, M., Bunkers, K.J., Clark, M., Egedal, J., Flanagan, K., McCollam, K.J., Milhone, J., Olson, J., Sovinec, C.R., Waleffe, R., Wallace, J. & Forest, C.B. 2019 A laboratory model for the Parker spiral and magnetized stellar winds. Nature Phys. 1.Google Scholar
Rouillard, A.P., Sheeley, N.R., Cooper, T.J., Davies, J.A., Lavraud, B., Kilpua, E.K. J., Skoug, R.M., Steinberg, J.T., Szabo, A., Opitz, A. & Sauvaud, J.-A. 2011 The solar origin of small interplanetary transients. Astrophys. J. 734 (1), 7.CrossRefGoogle Scholar
Sanchez-Diaz, E., Rouillard, A.P., Lavraud, B., Kilpua, E. & Davies, J.A. 2019 In situ measurements of the variable slow solar wind near sector boundaries. Astrophys. J. 882 (1), 51. arXiv:1911.09683.CrossRefGoogle Scholar
Sheeley, N.R.Jr., Wang, Y.-M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Paswaters, S.E., Socker, D.G., St. Cyr, O.C., Wang, D., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M., Plunkett, S. & Biesecker, D.A. 1997 Measurements of flow speeds in the corona between 2 and 30$R_\odot$. Astrophys. J. 484 (1), 472478.CrossRefGoogle Scholar
Sheeley, N.R., Lee, D.D.-H., Casto, K.P., Wang, Y.-M. & Rich, N.B. 2009 The structure of streamer blobs. Astrophys. J. 694 (2), 14711480.CrossRefGoogle Scholar
Sovinec, C.R., Glasser, A.H., Gianakon, T.A., Barnes, D.C., Nebel, R.A., Kruger, S.E., Schnack, D.D., Plimpton, S.J., Tarditi, A. & Chu, M.S. 2004 Nonlinear magnetohydrodynamics simulation using high-order finite elements. J. Comput. Phys. 195 (1), 355386.CrossRefGoogle Scholar
Sovinec, C.R. & King, J.R. 2010 Analysis of a mixed semi-implicit/implicit algorithm for low-frequency two-fluid plasma modeling. J. Comput. Phys. 229 (16), 58035819.CrossRefGoogle Scholar
Stephenson, J.A.E. & Walker, A.D.M. 2002 HF radar observations of Pc5 ULF pulsations driven by the solar wind. Geophys. Res. Lett. 29 (9), 8-18-4.CrossRefGoogle Scholar
Uzdensky, D.A. & Loureiro, N.F. 2016 Magnetic reconnection onset via disruption of a forming current sheet by the tearing instability. Phys. Rev. Lett. 116 (10), arXiv:1411.4295.CrossRefGoogle ScholarPubMed
Uzdensky, D.A., Loureiro, N.F. & Schekochihin, A.A. 2010 Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002.CrossRefGoogle ScholarPubMed
Viall, N.M., Kepko, L. & Spence, H.E. 2008 Inherent length-scales of periodic solar wind number density structures. J. Geophys. Res.: Space Phys. 113 (A7), n/an/a.CrossRefGoogle Scholar
Viall, N.M. & Vourlidas, A. 2015 Periodic density structures and the origin of the slow solar wind. Astrophys. J. 807 (2), 176.CrossRefGoogle Scholar
Wang, Y.-M. & Hess, P. 2018 Gradual streamer expansions and the relationship between blobs and inflows. Astrophys. J. 859 (2), 135.CrossRefGoogle Scholar
Wang, Y.-M., Sheeley, N.R.Jr., Howard, R.A., Kraemer, J.R., Rich, N.B., Andrews, M.D., Brueckner, G.E., Dere, K.P., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Paswaters, S.E., Socker, D.G., Wang, D., Lamy, P.L., Llebaria, A., Vibert, D., Schwenn, R. & Simnett, G.M. 1997 Origin and evolution of coronal streamer structure during the 1996 minimum activity phase. Astrophys. J. 485 (2), 875889.CrossRefGoogle Scholar
Wang, Y.-M., Sheeley, N.R.Jr., Walters, J.H., Brueckner, G.E., Howard, R.A., Michels, D.J., Lamy, P.L., Schwenn, R. & Simnett, G.M. 1998 Origin of streamer material in the outer corona. Astrophys. J. 498 (2), L165L168.CrossRefGoogle Scholar
Wu, S.T., Wang, A.H., Plunkett, S.P. & Michels, D.J. 2000 Evolution of global-scale coronal magnetic field due to magnetic reconnection: the formation of the observed blob motion in the coronal streamer belt. Astrophys. J. 545 (2), 11011115.CrossRefGoogle Scholar

Peterson et al. supplementary material

Peterson et al. supplementary material

Download Peterson et al. supplementary material(Video)
Video 13.6 MB