Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T05:26:58.098Z Has data issue: false hasContentIssue false

Kinetic theory of surface wave propagation along a hot plasma column

Published online by Cambridge University Press:  13 March 2009

V. Atanassov
Affiliation:
Faculty of Physics, Sofia University, 1126 Sofia
I. Zhelyazkov
Affiliation:
Faculty of Physics, Sofia University, 1126 Sofia
A. Shivarova
Affiliation:
Faculty of Physics, Sofia University, 1126 Sofia
Zh. Genchev
Affiliation:
Institute of Electronics of the Bulgarian Academy of Sciences, 1113 Sofia

Abstract

In this paper we propose an exact solution of Vlasov and Maxwell's equations for a bounded hot plasma in order to derive the dispersion relation of the axially-symmetric surface waves propagating along a plasma column. Assuming specular reflexion of plasma particles from the boundary, expressions for the components of the electric displacement vector are obtained on the basis of the Vlasov equation. Their substitution in Maxwell's equations, neglecting the spatial dispersion in the transverse plasma dielectric function, allows us to determine the plasma impedance. The equating of plasma and dielectric impedances gives the wave dispersion relation which, in different limiting cases, coincides with the well-known results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akao, Y. & Ida, Y. 1964 J. Appl. Phys. 35, 2565.CrossRefGoogle Scholar
Aronov, B. I., Bogdankevich, L. S. & Rukhadze, A. A. 1976 Plasma Phys. 18, 101.CrossRefGoogle Scholar
Barr, H. C. & Boyd, T. J. M. 1972 J. Phys. A 5, 1108.Google Scholar
Clemmow, P. C. & Elgin, J. 1974 J. Plasma Phys. 12, 91.CrossRefGoogle Scholar
Clemmow, P. C. & Elgin, J. 1975 J. Plasma Phys. 14, 179.CrossRefGoogle Scholar
Genchev, Zh. D. & Kalmykova, S. S. 1972 Ukr. Fiz. Zh. 17, 443.Google Scholar
Ginzburg, V. L. & Rukhadze, A. A. 1970 Volny υ Magnitoaktivnoi Plazme. Nauka.Google Scholar
Ichimaru, S. & Yakimenko, I. P. 1973 Physica Scripta 7, 198.CrossRefGoogle Scholar
Kondratenko, A. N. 1972 Zh. Tekh. Fiz. 42, 743.Google Scholar
Moisan, M., Beaudry, C. & Leprince, P. 1974 Phys. Lett. 50 A, 125.CrossRefGoogle Scholar
Romanov, Yu. A. 1964 Izv. VUZ Radiofizika 7, 242.Google Scholar
Schumann, W. O. 1950 Z. Naturf. A 5, 612.Google Scholar
Trivelpiece, A. W. & Gould, R. W. 1959 J. Appl. Phys. 30, 1784.CrossRefGoogle Scholar
Zhelyazkov, I. & Nenovski, P. 1974 J. Phys. A 7, 2223.Google Scholar