Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T08:35:36.341Z Has data issue: false hasContentIssue false

Kinetic theory of stimulated Raman scattering from a magnetized plasma

Published online by Cambridge University Press:  13 March 2009

T. J. M. Boyd
Affiliation:
Department of Physics, University College of North Wales, Bangor LL57 2UW, U.K.
R. Rankin
Affiliation:
Department of Physics, University College of North Wales, Bangor LL57 2UW, U.K.

Abstract

Finite Larmor radius corrections have been considered in the effects of strong magnetic fields on stimulated Raman scattering. A nonlinear dispersion relation describing the various channels of decay has been derived from the Vlasov-Maxwell equations and frequencies and growth rates determined for the decay of incident laser light in the extraordinary mode into scattered extraordinary mode radiation and electron Bernstein waves. A relativistic one-and-a-half dimensional particle code has been used to simulate the scattering process and the results from the numerical experiments have been compared with those obtained analytically, the agreement being generally good. Growth rates of the Bernstein waves are substantial when sufficiently strong magnetic fields are present in hot plasmas. Under these conditions the kinetic analysis shows that, in contrast to the predictions of fluid theory, the scattered light emitted from densities well below the quarter-critical layer can have a frequency less than ½ω0 where ω0 is the laser frequency. In an unmagnetized plasma this occurs only when the plasma has a finite temperature.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biskamp, D. & Welter, H. 1975 Phys. Rev. Lett. 34, 312.CrossRefGoogle Scholar
Bobin, J. L., Decroisette, M., Meyer, B. & Vitel, Y. 1973 Phys. Rev. Lett. 30, 594.CrossRefGoogle Scholar
Boyd, T. J. M. & Turner, J. G. 1978 J. Math. Phys. 19, 1403.CrossRefGoogle Scholar
Boyd, T. J. M., Cooke, D. & Humphreys-Jones, G. J. 1982 a Phys. Lett. A 88, 140.CrossRefGoogle Scholar
Boyd, T. J. M., Barr, H. C., Gardner, L. R. T. & Rankin, R. 1982 b Proceedings of International Conference on Plasma Physics, Goteborg, Sweden, p. 217.Google Scholar
Elazar, J., Toner, W. & Wooding, E. R. 1981 Plasma Phys. 23, 813.CrossRefGoogle Scholar
Estabrook, K., Kruer, W. L. & Lasinski, B. F. 1980 Phys. Rev. Lett. 45, 1399.CrossRefGoogle Scholar
Estabrook, K. & Kruer, W. L. 1983 Phys. Fluids, 26, 1892.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1973 Phys. Rev. Lett. 30, 739.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1975 Phys. Fluids, 18, 1002, 1017.CrossRefGoogle Scholar
Goldman, M. V. 1976 Ann. Phys. 38, 117.CrossRefGoogle Scholar
Grebogi, C. & Liu, C. S. 1980 Phys. Fluids, 23, 1330.CrossRefGoogle Scholar
Grebogi, C. & Liu, C. S. 1980 J. Plas. Phys. 23, 147.CrossRefGoogle Scholar
Jackson, E. A. 1967 Phys. Rev. 153, 235.CrossRefGoogle Scholar
Joshi, C., Tajima, T., Dawson, J. M., Baldis, H. A. & Ebrahim, N. A. 1981 Phys. Rev. Lett. 47, 1285.CrossRefGoogle Scholar
Kaw, P. K. & Lee, Y. C. 1973 Phys. Fluids, 16, 155.CrossRefGoogle Scholar
Kruer, W. L., Estabrook, K., Lasinski, B. F. & Langdon, A. B. 1980 Phys. Fluids, 23, 1326.CrossRefGoogle Scholar
Langdon, A. B., Lasinski, B. F. & Kruer, W. L. 1979 Phys. Rev. Lett. 43, 133.CrossRefGoogle Scholar
Lee, Y. C. & Kaw, P. K. 1974 Phys. Rev. Lett. 32, 135.CrossRefGoogle Scholar
Liu, C. S., Rosenbluth, M. N. & White, R. B. 1974 Phys. Fluids, 17, 1211.CrossRefGoogle Scholar
Liu, C. S. & Rosenbluth, M. N. 1976 Phys. Fluids, 19, 967.CrossRefGoogle Scholar
Phillion, D. W., Banner, D. L., Campbell, E. M. & Turner, R. E. 1982 a Phys. Fluids, 25, 1434.CrossRefGoogle Scholar
Phillion, D. W., Campbell, E. M., Estabrook, K. G., Phillips, G. E. & Ze, F. 1982 b Phys. Rev. Lett. 49, 2405.CrossRefGoogle Scholar
Porkolab, M. 1972 Nuc. Fusion, 12, 329.CrossRefGoogle Scholar
Porkolab, M. 1976 Physica, 82B, 86.Google Scholar
Porkolab, M. & Chang, R. P. H. 1978 Rev. Mod. Phys. 50, 745.CrossRefGoogle Scholar
Ram, S. 1982 Plasma Phys. 24, 885.CrossRefGoogle Scholar
Raven, A., Willi, O. & Rumsby, P. T. 1979 Phys. Lett. 71A, 435.Google Scholar
Raven, A., Rumsby, P. T., Stamper, J. A., Willi, O., Illingworth, R. & Thareja, R. 1979 App. Phys. Lett. 35, 526.CrossRefGoogle Scholar
Rosenbluth, M. N. 1972 Phys. Rev. Lett. 29, 565.CrossRefGoogle Scholar
Schuss, J. J. 1977 Phys. Fluids, 20, 1120.CrossRefGoogle Scholar
Sim, S. M. L. & Mcgoldrick, E. 1982 Opt. Commun. 40, 433.Google Scholar
Silin, V. P. 1967 Soviet Phys. JETP, 24, 1242.Google Scholar
Stamper, J. A., Mclean, E. A. & Ripin, B. H. 1978 Phys. Rev. Lett. 40, 1177.CrossRefGoogle Scholar
Stenflo, L. 1974 Plasma Phys. 16, 677.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Tanaka, K., Goldman, L. M., Seka, W., Richardson, M. C., Soures, J. & Williams, E. 1982 Phys. Rev. Lett. 48, 1179.CrossRefGoogle Scholar
Watt, R. G., Brooks, R. D. & Pietrzyk, Z. A. 1978 Phys. Rev. Lett. 41, 170.CrossRefGoogle Scholar
Willi, O., Rumsby, P. T. & Duncan, C. 1981 Opt. Commun. 37, 40.Google Scholar
Willi, O., Rumsby, P. T. & Sartang, S. 1981 IEEE J. Quant. Electronics, QE-17, 1909.CrossRefGoogle Scholar
Willi, O., Rumsby, P. T., Hooker, C., Raven, A. & Lin, Z. Q. 1982 Opt. Commun. 41, 110.Google Scholar