Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T13:13:21.100Z Has data issue: false hasContentIssue false

Kinetic theory of cross-modulation in a weakly ionized plasma

Published online by Cambridge University Press:  13 March 2009

A. J. M. Garrett
Affiliation:
Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, U.K.

Abstract

Cross-modulation in plasma is an electromagnetic wave interaction in which the modulation of one ‘disturbing’ wave is imposed nonlinearly on the transport properties of the medium, and thence onto a second, ‘wanted’ wave propagating linearly through it. This analysis is restricted to weakly ionized plasma with allowance for ambient magnetic field, as in the lower ionosphere. A kinetic description is used, based on the Boltzmann equation for the electrons, with electron-molecule collisions described by Boltzmann's collision integral. Because of the small mass ratio this simplifies to a differential form. The perturbation of the electron velocity distribution function f(v, t) due to the disturbing wave is calculated up to terms quadratic in wave amplitude, which are the lowest order to show the effect. The part of the term quadratic in wave amplitude at zero times the fundamental frequency, and isotropic in velocity space, which represents the perturbation in electron energy distributions, is selectively enhanced by an inverse factor of mass ratio, since the excess energy imparted by the wave to the electrons is transferred collisionally to the molecules at a rate inversely proportional to mass ratio. Modulation of the wave induces modulation of the electron energy distribution. A more general expansion scheme, in velocity-space spherical harmonics, is also presented. To calculate the dispersion relation for the second, ‘wanted’ wave, the linear part of the disturbing wave analysis is adapted, and the amplitude of the wanted wave is given in the WKB approximation as a phase integral of the refractive index along the ray path; this contains moments of the electron energy distribution and is modulated. The predictions of older semi-empirical theories, that the effect is enhanced when the fundamental frequency of the disturbing wave is close to the electron gyrofrequency, and that the second harmonic of the modulation is also imposed on the wanted wave, are confirmed. The wanted wave is predominantly amplitude-modulated, and only amplitude modulation of the disturbing wave is picked up; phase modulation is not transferred. There is no cross-modulation if the collision frequency is independent of collision speed, when contributions from all parts of velocity space cancel.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al'pert, Ya. L., Ginzburg, V. L. & Feinberg, E. L. 1953 Propagation of Radio Waves (Rasprostranenie Radiovoln). Gostekhizdat.Google Scholar
Bailey, V. A. 1937 a Phil. Mag. 23, 774.CrossRefGoogle Scholar
Bailey, V. A. 1937 b Phil. Mag. 23, 929.CrossRefGoogle Scholar
Bailey, V. A. 1937 c Nature 139, 838.CrossRefGoogle Scholar
Bailey, V. A. 1938 Phil. Mag. 26, 425.CrossRefGoogle Scholar
Bailey, V. A. 1965 Radio Sci. 69 D, 9.Google Scholar
Bailey, V. A. & Martyn, D. F. 1934 Phil. Mag. 18, 369.CrossRefGoogle Scholar
Barrett, E. B., Whitmer, R. F. & Tetenbaum, S. J. 1964 Phys. Rev. A 135, 369.CrossRefGoogle Scholar
Bayet, M., Delcroix, J. L. & Denisse, J. F. 1957 Ann. Telecom. 12, 140.CrossRefGoogle Scholar
Booker, H. G. 1984 Cold Plasma Waves. Nijhoff.CrossRefGoogle Scholar
Budden, K. G. 1965 Radio Sci. 69 D, 191.Google Scholar
Budden, K. G. 1985 The Propagation of Radio Waves. Cambridge University Press.CrossRefGoogle Scholar
Budden, K. G. & Stott, G. F. 1980 J. Atmos. Terr. Phys. 42, 791.CrossRefGoogle Scholar
Butt, A. G. 1933 World-Radio (Letters to the Editor) 16, 556.Google Scholar
Caldirola, P. & De Barbieri, O. 1965 Radio Sci. 69D, 33.Google Scholar
Cerisier, J. C. 1974 ELF-VLF Radio Wave Propagation (ed. Holtet, J.). Reidel.Google Scholar
Chakraborty, B. 1978 Principles of Plasma Mechanics. Wiley Eastern.Google Scholar
Clemmow, P. C. & Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas. Addison-Wesley.Google Scholar
Crompton, R. W., Huxley, L. G. & Sutton, D. J. 1953 Proc. R. Soc. Lond. A 218, 507.Google Scholar
Fejer, J. A. 1955 J. Atmos. Terr. Phys. 7, 322.CrossRefGoogle Scholar
Futcher, E. F., Hoare, M. R., Hendricks, E. M. & Ernst, M. H. 1980 Physica A 101, 185.CrossRefGoogle Scholar
Garrett, A. J. M. 1982 a Electromagnetic waves and collision kinetics, University of Cambridge Hamilton Prize Essay.Google Scholar
Garrett, A. J. M. 1982 b J. Plasma Phys. 27, 135.CrossRefGoogle Scholar
Garrett, A. J. M. 1982 c J. Plasma Phys. 28, 233.CrossRefGoogle Scholar
Garrett, A. J. M. 1983 J. Phys. A 16, 1505.Google Scholar
Garrett, A. J. M. 1984 The collisional Boltzmann equation: electromagnetic waves and relaxation processes. Ph.D. thesis, University of Cambridge, chap. 3.Google Scholar
Garrett, A. J. M. 1985 J. Plasma Phys. 33, 265.CrossRefGoogle Scholar
Ginzburg, V. L. 1948 Izv. Akad. Nauk SSSR Ser. Fiz. 12, 293.Google Scholar
Ginzburg, V. L. 1958 Soviet Phys. JETP 8, 1100.Google Scholar
Ginzburg, V. L. & Gurevich, A. V. 1960 a Soviet Phys. Usp. 3, 115.CrossRefGoogle Scholar
Ginzburg, V. L. & Gurevich, A. V. 1960 b Soviet Phys. Usp. 3, 175.CrossRefGoogle Scholar
Graffi, D. 1936 Rend. Sem. Mat. Univ. Padova 7, 36.Google Scholar
Gurevich, A. V. 1957 Soviet. Phys. JETP 3, 895.Google Scholar
Gurevich, A. V. 1958 a Izv. VUZ Radiofiz. 1 (1), 17.Google Scholar
Gurevich, A. V. 1958 b Izv. VUZ Radiofiz. 1 (4), 21.Google Scholar
Gurevich, A. V. 1978 Nonlinear Phenomena in the Ionosphere. Springer.CrossRefGoogle Scholar
Huxley, L. G. H. & Ratcliffe, J. A. 1949 Proc. Inst. Elect. Engrs 96, part III, 433.Google Scholar
Jancel, R. 1975 Phys. Rev. A 12, 1662.CrossRefGoogle Scholar
Jancel, R. 1978 Phys. Rev. A 18, 1688.CrossRefGoogle Scholar
Jaynes, E. T. 1984 Proceedings of SIAM/AMS, vol. 14, p. 151. American Mathematical Society.Google Scholar
Johnston, T. W. 1966 J. Math. Phys. 7, 1453.CrossRefGoogle Scholar
Keller, J. B. & Zumino, B. 1959 J. Chem. Phys. 30, 1351.CrossRefGoogle Scholar
Kliskey, J. H. 1970 Ionospheric Cross-Modulation (Luxembourg Effect), Gyro-Interaction and Self-Demodulation. Marconi Company I.T.M. 3296, Research Division, Great Baddow, Essex, UK.Google Scholar
Kovrizhnykh, L. M. 1960 Soviet. Phys. JETP 37, 347.Google Scholar
Kumar, K., Skullerud, H. R. & Robson, R. E. 1980 Aust. J. Phys. 33, 343.CrossRefGoogle Scholar
Layzer, D. & Menzel, D. H. 1965 Radio Sci. 69 D, 59.Google Scholar
Maslin, N. M. 1974 Proc. R. Soc. Lond. A 341, 361.Google Scholar
Maslin, N. M. 1975 a Proc. R. Soc. Lond. A 343, 109.Google Scholar
Maslin, N. M. 1975 b Proc. R. Soc. Lond. A 346, 37.Google Scholar
Maslin, N. M. 1976 a Proc. R. Soc. Lond. A 348, 245.Google Scholar
Maslin, N. M. 1976 b Proc. R. Soc. Lond. A 349, 555.Google Scholar
Maslin, N. M. 1976 c Proc. R. Soc. Lond. A 351, 277.Google Scholar
Megill, L. R. 1965 Radio Sci. 69 D, 367.Google Scholar
Ramana, K. V. V., Madhusudhana, Rao D. N. & Jaganmohan, Rao B. 1979 Radio Sci. 14, 1157.CrossRefGoogle Scholar
Sen, H. K. & Wyller, A. A. 1960 J. Geophys. Res. 65, 3931.CrossRefGoogle Scholar
Shkarovsky, I. P., Johnston, T. W. & Bachynski, M. P. 1966 The Particle Kinetics of Plasmas. Addison-Wesley.Google Scholar
Tellegen, B. D. H. 1933 Nature 131, 840.CrossRefGoogle Scholar
Tetenbaum, S. J., Whitmer, R. F. & Barrett, E. B. 1964 Phys. Rev. A 135, 374.CrossRefGoogle Scholar
Vilenskii, I. M. 1952 Zh. Eksp. Teor. Fiz. SSSR 22, 544.Google Scholar
Vilenskii, I. M. 1955 Zh. Eksp. Teor. Fiz. SSSR 26, 42.Google Scholar
Whitmer, R. F. & Barrett, E. B. 1961 Phys. Rev. 121, 661.CrossRefGoogle Scholar
Whitmer, R. F. & Barrett, E. B. 1962 Phys. Rev. 125, 1478.CrossRefGoogle Scholar