Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T13:14:09.460Z Has data issue: false hasContentIssue false

Kinetic theory of binary correlations in turbulent plasmas

Published online by Cambridge University Press:  13 March 2009

J. H. Misguich
Affiliation:
Association Euratom-CEA, Département de la Physique du Plasma et de la Fusion Contrôlée, Centre d'Etudes Nucléaires, B.P. 6, 92260- Fontenay-aux-Roses, France
R. Balescu
Affiliation:
Association Euratom-Etat Belge, Faculté des Science, C.P. 231, Campus Plaine, Université Libre de Bruxelles, Belgique

Abstract

The two-particle correlations in a turbulent plasma are analyzed on a quite general basis by using the modern methods of non-equilibrium statistical mechanics. It is shown that the binary correlations can be split (in a time in- variant way) into a part which decays quickly by ballistic motion, and a long- living part: ‘the natural correlations’. The latter are continuously regenerated from the one-particle distribution function by the internal interactions, even in the absence of true collisions. The general theory can be made operational by using approximation schemes, among which the ‘RQL2’ method, which generalizes the renormalized quasi-linear approximation, leads to results comparable to, but more general than, those developed by previous authors. The explicit relation of the long-living enhanced correlations to the concept of ‘clumps’ will be developed in a forthcoming paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. 1971 Physica, 56, 1.CrossRefGoogle Scholar
Balescu, R. 1972 Irreversibility in the many-body problem (ed. Biel, J. and Rae, J.),Sitges mt. School of Physics, p. 209. Plenum.CrossRefGoogle Scholar
Balescu, R. 1975 Equilibrium and non-equilibrium statlstwal mechanics. Wiley.Google Scholar
Balescu, R. & Misguich, J. H. 1975a J. Plasma Phys. 13, 33.CrossRefGoogle Scholar
Balescu, R. & Misguich, J. H. 1975b J. Plasma Phys. 13, 53.CrossRefGoogle Scholar
Balescu, R. & Wallenborn, J. 1971 Physica, 54, 477.CrossRefGoogle Scholar
Baus, M. 1973 Physica, 66, 421.CrossRefGoogle Scholar
Besieris, I. M. & Tappert, F. P. 1976 J. Math. Phys. 17, 734.CrossRefGoogle Scholar
Birmingham, T. J. & Bornatici, M. 1972a Phys. Fluids, 15, 1778.CrossRefGoogle Scholar
Birmingham, T. J. & Bornatioi, M. 1972b Phys. Fluids, 15, 1785.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Dupree, T. H. 1966 Phys. Fluids, 9, 1773.CrossRefGoogle Scholar
Dupree, T. H. 1970 Phys. Rev. Lett. 25, 789.CrossRefGoogle Scholar
Dupree, T. H. 1972 Phys. Fluids, 15, 334.CrossRefGoogle Scholar
Dupree, T. H., Wagner, C. E. & Manheimer, W. M. 1975 Phys. Fluids, 18, 1167.CrossRefGoogle Scholar
Engelmann, F. & Morrone, T. 1972 Comments Plasma Phys. Control. Fusion, 1, 75.Google Scholar
Frisch, U. 1966 Annales d'Astrophysique, 29, 645.Google Scholar
Hatori, T. 1969 J. Phys. Soc. Japan, 27, 203.CrossRefGoogle Scholar
Hui, B. H. & Dupree, T. H. 1975 Phys. Fluids, 18, 235.CrossRefGoogle Scholar
Ichimaru, S. 1970 Phys. Fluids, 13, 1560.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic principles of plasma physics. Benjamin.Google Scholar
Kadomtsev, B. B. & Pogutse, O. P. 1970a Report 1C/70/54, Int. Centre for Theoretical Physics, Trieste.Google Scholar
Kadomtsev, B. B. & Pogutse, O. P. 1970b Proc. Europ. Conf. Control. Fusion Plasma Physics, Rome, 74.Google Scholar
Kadomtsev, B. B. & Pogutse, O. P. 1970c Phys. Rev. Lett. 25, 1155.CrossRefGoogle Scholar
Kadomtsev, B. B. & Pogutse, O. P. 1971 Phys. Fluids, 14, 2470.CrossRefGoogle Scholar
Klimontovich, , Yu, L. 1967 The statistical theory of non-equilibrium processes in a plasma. Pergamon.Google Scholar
Misguich, J. H. 1969 J. de Physique, 30, 221.CrossRefGoogle Scholar
Misguich, J. H. & Balescu, R. 1974 Phys. Lett. A 48, 426.CrossRefGoogle Scholar
Misguich, J. H. & Balescu, R. 1975a J. Plasma Phys. 13, 385.CrossRefGoogle Scholar
Misguich, J. H. & Balescu, R. 1975b J. Plasma Phys. 13, 419.CrossRefGoogle Scholar
Misguich, H. & Balescu, R. 1975c J. Plasma Phys. 13, 429.CrossRefGoogle Scholar
Misguich, J. H. & Balescu, R. 1975d Bull. Cl. Sc. Acad4mie Roy. Belgique, 61, 210.Google Scholar
Misguich, J. H. & Balescu, R. 1975e Physica, 79C, 373.Google Scholar
Misguich, J. H. & Nicolis, G. 1972 Molecular Phys. 24, 309.CrossRefGoogle Scholar
Montgomery, P. C. 1971 Theory of the unmagnetized plasma. Gordon.Google Scholar
Orszag, S. A. & Kraichnan, R. H. 1967 Phys. Fluids, 10, 1720.CrossRefGoogle Scholar
Pelletier, G. & Pomot, C. 1975 J. Plasma Phys. 14, 153.CrossRefGoogle Scholar
Prigogine, I. 1962 Non-equilibrium statistical mechanics. Wiley.Google Scholar
Prigogine, I., George, C. & Henin, F. 1969 Physica, 45, 418.CrossRefGoogle Scholar
Prigogine, I., George, C., Henin, F. & Rosenfeld, L. 1973 Chemica Scripta, 4, 5.Google Scholar
Rudakov, L. I. & Tsytovich, V. N. 1971 Plasma Phys. 13, 213.CrossRefGoogle Scholar
Silin, V. P. 1964 Zh. Prikl. Mekhan. Tekhn. Fiz. 31.Google Scholar
Silin, V. P. 1965 Izv. Vys. Uchebn. Zaved. Fiz. 21.Google Scholar
Vaclavik, J. 1975 J. Plasma Phys. 14, 315.CrossRefGoogle Scholar
Weinstock, J. 1969 Phys. Fluids, 12, 1045.CrossRefGoogle Scholar
Weinstock, J. 1970 Phys. Fluids, 13, 2308.CrossRefGoogle Scholar
Weinstock, J. 1972 Phys. Fluids, 15, 454.CrossRefGoogle Scholar