Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T13:03:24.376Z Has data issue: false hasContentIssue false

Kinetic equations for plasmas subjected to a strong time-dependent external field: Part 3. Stochastic equations for plasma turbulence

Published online by Cambridge University Press:  13 March 2009

R. Balescu
Affiliation:
Association Euratom-Etat Belge, Faculté des Science, Université Libre de Bruxelles, 1050 Bruxelles
J. H. Misguich
Affiliation:
Association Euratom-CEA sur la Fusion, Département de Physique du Plasma et de la Fusion Contr^iéCentre d'Etudes Nucléaires, Boîte Postale no. 6, 92260 Fontenay-aux-Roses, France

Extract

The kinetic equation obtained in parts 1 and 2 is treated stochastically: the external field is stochastic, with an average and a fluctuating part. The turbulence of the system is described by the induced fluctuations in the plasma, and a general equation is derived for the average distribution function. As a particular case, the stochastic Vlasov equation is treated explicitly, and compared with the descriptions of Dupree, Weinstock and Benford & Thomson.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. & Misguich, J. H. 1973 EUR. CEA FC Rep. 691.Google Scholar
Balescu, R. & Misguich, J. H. 1974 a J. Plasma Phys. 11, 357.CrossRefGoogle Scholar
Balescu, R. & Misguich, J. H. 1974 b J. Plasma Phys. 11, 377.CrossRefGoogle Scholar
Balescu, R. & Misguich, J. H. 1974 c J. Plasma Phys. 13, 53.CrossRefGoogle Scholar
Benford, G. & Thomson, J. J. 1972 Phys. Fluids. 15, 1496.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1960 Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Drummond, W. E. & Pines, D. 1962 Nucl. Fusion Suppl. 3, 1049.Google Scholar
Dum, C. T. & Dupree, T. H. 1970 Phys. Fluids, 13, 2064.CrossRefGoogle Scholar
Dupree, T. H. 1966 Phys. Fluids, 9, 1773.CrossRefGoogle Scholar
Fer, F. 1958 Bull Classe des Sci. Acad. Roy. Belgique, 44, 818.Google Scholar
Fox, R. F. & Uhlenbeck, G. E. 1970 Phys. Fluids, 13, 1893.CrossRefGoogle Scholar
Frisch, U. 1966 Ann. Astrophys. 29, 645.Google Scholar
Klimontovich, Y. L. 1967 The Statistical Theory of Non-Equilibrium Processes in a Plasma. Pergamon.Google Scholar
Kraichnan, R. H. 1972 Statistical Mechanics. Proc. 6th IUPAP Conf. on Stat. Mech., Chicago (ed. Rice, S. A., Freed, K. F. and Light, J. C.), p. 201. University of Chicago Press.Google Scholar
Landau, L. D. & Lifschitz, E. M. 1959 Fluids Mechanics. Pergamon.Google Scholar
McCoy, J. J. 1972 J. Opt. Soc. Amer. 62, 30.CrossRefGoogle Scholar
Magnus, W. 1954 Comm. Pure Appl. Math. 7, 649.CrossRefGoogle Scholar
Misguich, J. H. 1969 J. de Phys. 30, 221.CrossRefGoogle Scholar
Misguich, J. H. 1972 Mol. Phys. 24, 309.CrossRefGoogle Scholar
Misguich, J. H. & Balescu, R. 1974 EUR. CEA PC Rep. 748.Google Scholar
Nakayama, T. & Dawson, J. M. 1967 J. Math. Phys. 8, 553.CrossRefGoogle Scholar
Orszag, S. A. & Kraichnan, R. H. 1967 Phys. Fluids, 10, 1720.CrossRefGoogle Scholar
Silin, V. P. 1970 Soviet. Phys. JETP, 30, 105.Google Scholar
Spatschek, K. H. 1973 Proc. 11th Int. Conf. on Phenomena in Ionised Gases, Prague, p. 266. Czechoslovak Academy of Science.Google Scholar
Thomson, J. J. & Benford, O. 1972 Phys. Rev. Letters, 28, 590.CrossRefGoogle Scholar
Vedenov, A., Velikhov, E. & Sagdeev, R. 1962 Nucl. Fusion suppl. 2, 465.Google Scholar
Wilcox, R. 1967 J. Math. Phys. 8, 962.CrossRefGoogle Scholar
Weinstock, J. 1969 Phys. Fluids, 12, 1045.CrossRefGoogle Scholar