Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T13:15:42.693Z Has data issue: false hasContentIssue false

Kinetic equations for plasmas subjected to a strong time-dependent external field. Part 1. General theory

Published online by Cambridge University Press:  13 March 2009

R. Balescu
Affiliation:
Association Euratom.Etat Belge, Faculté des Sciences, Université Libre de Bruxelles, 1050 Bruxelles
J. H. Misguich
Affiliation:
Association Euratom-CEA sur la Fusion, Départemont de Physique du Plasma et de la Fusion Contrôlée, Centre d'Etudes Nucléaires, Boîte Postale no. 6, 92260 Fontenay-aux.Roses, France

Abstract

It is shown that the concept of subdynamics introduced by Prigogine, George & Henin, and extended by Balescu & Wallenborn, can be generalized nontrivially to systems submitted to time-dependent external fields. The distribution vector of the system is split into two components by means of a time- dependent projection operator. Each of these obeys an independent equation of evolution. The description of the evolution of one of these components (the superkinetic component) can be reduced to a kinetic equation for a one-particle distribution function. It is shown that, when the external field vanishes for all times tt0, and if the system has reached a (field-free) equilibrium (or a ‘kinetic state’) at time t0, then for tt0 the kinetic equation derived here provides an exact and complete description of the evolution. A general expression for the nonlinear response of the system to the external field is derived.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Balescu, R. 1961 Physica, 27, 693.CrossRefGoogle Scholar
Balescu, R. 1971 Physica, 56, 1.CrossRefGoogle Scholar
Balescu, R. 1972 Irreversibility in the Many.Body Problem (ed. J. Biel and Rae, J.), p. 209. Plenum.CrossRefGoogle Scholar
Balescu, R., Brenig, L. & Wallenborn, J. 1971 Physica, 52, 29.CrossRefGoogle Scholar
Balescu, R. & Misguich, J. H. 1973 Fontenay-aux-Roses Rep. EUR-CEA-FC-691.Google Scholar
Balescu, R. & Misguich, J. H. 1974 a J. Plasma Phys. 11, 377.CrossRefGoogle Scholar
Balescu, R. & Misguich, J. H. 1974 b J. Plasma Phys. (To be published.)Google Scholar
Balescu, R. & Wailenborn, J. 1971 Physica, 54, 477.CrossRefGoogle Scholar
Bogoliubov, N. N. 1962 Studies in Statistical Mechanics, vol. 1 (ed. de Boer, J. and G. H. Uhlenbeck). North Holland.Google Scholar
Bona, G. di & Masselot, C. 1971 Nuovo Cim. Lett. 1, 1124.CrossRefGoogle Scholar
Bonz, G. di & Masselot, C. 1972 a Nuovo Cim. B 12, 256.Google Scholar
Bona, G. di & Masselot, C. 1972 b Centre d'Etudes de Limeil Rep. CEA-R.4375.Google Scholar
Bona, G. di & Masselot, C. 1973 Nuovo Cim. B 18, 131.Google Scholar
Clavin, P. 1971 Ph.D. thesis, Poitiers.Google Scholar
Clavin, P. 1972 C. R. Acad. Sci. Paris, 274, 1085.Google Scholar
Demendy, Z. 1972 a Physica, 59, 1.CrossRefGoogle Scholar
Demendy, Z. 1972 b Physica, 59, 14.CrossRefGoogle Scholar
Demendy, Z. 1972 c Physica, 59, 463.CrossRefGoogle Scholar
Demendy, Z. 1972 d Physica, 62, 545.CrossRefGoogle Scholar
Demendy, Z. 1973 a Physica, 63, 33.CrossRefGoogle Scholar
Demendy, Z. 1973 b Physica, 64, 82.CrossRefGoogle Scholar
Kuszell, A. & Senatorski, A. 1968 Physica, 40, 453.CrossRefGoogle Scholar
Kuszell, A. & Senatorski, A. 1969 Physica, 42, 587.CrossRefGoogle Scholar
Lugiato, L. 1969 Physics, 44, 337.Google Scholar
Prigogine, I., George, G. & Henin, F. 1969 Physica, 45, 418.CrossRefGoogle Scholar
Résibois, P. & Davis, H. T. 1964 Physica, 30, 1077.CrossRefGoogle Scholar
Severne, G. 1964 Physica, 30, 1365.CrossRefGoogle Scholar
Silin, V. P. 1960 Soviet Phys. JETP, 11, 1272.Google Scholar
Silin, V. P. 1962 Soviet Phys. JETP, 14, 617.Google Scholar
Wilcox, R. 1967 J. Math. Phys. 8, 962.CrossRefGoogle Scholar