Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T19:08:55.369Z Has data issue: false hasContentIssue false

Kinetic description of a wiggler-pumped ion-channel free-electron laser by applying the Einstein coefficient technique

Published online by Cambridge University Press:  03 June 2013

A. HASANBEIGI
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614, Iran ([email protected])
S. ABASIROSTAMI
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614, Iran ([email protected])
H. MEHDIAN
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614, Iran ([email protected])

Abstract

A kinetic theory is used to investigate the theory of a free-electron laser with a helical wiggler and an ion channel based on the Einstein coefficient method. The laser gain in the low-gain regime is obtained for the case of a cold tenuous relativistic electron beam, where the beam plasma frequency is much less than the radiation frequency, propagating in this configuration. The resulting gain equation is analyzed numerically over a wide range of system parameters.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bekefi, G. 1977 Radiation Processes in Plasma. New York: Wiley.Google Scholar
Chen, C. and Davidson, R. C. 1994 Phys. Rev. A 43, 5541.CrossRefGoogle Scholar
Freund, H. P. and Antonsen, J. M. Jr. 1996 Principles of Free-Electron Lasers. London: Chapman and Hall.Google Scholar
Hasanbeigi, A., Mahdian, H. and Jafari, S. 2011 Chin. Phys. B 20, 094103.CrossRefGoogle Scholar
Jacson, J. D. 1975 Classical Electrodynamics. New York: Wiley.Google Scholar
Jha, P. and Kumar, P. 1996 IEEE Trans. Plasma Sci. 24, 1359.CrossRefGoogle Scholar
Jha, P. and Kumar, P. 1998 Phys. Rev. E 57, 2256.Google Scholar
Lambert, G., Hara, T., Garzella, D., Tanikawa, T., Labat, M., Carre, B., Kitamura, H., Shintake, T., Bougeard, M., Inoue, S., Tanaka, Y., Salieres, P., Merdji, H., Chubar, O., Gobert, O., Tahara, K. and Couprie, M.-E. 2008 Nat. Phys. 4, 296.CrossRefGoogle Scholar
Mahdian, H., Hasanbeigi, A. and Jafari, S. 2008 Phys. Plasma 15, 123101.CrossRefGoogle Scholar
Mahdian, H. and Raghavi, A. 2006 Plasma Phys. Control. Fusion 48, 991.CrossRefGoogle Scholar
McMullin, W. A. and Davidson, R. C. 1982 Phys. Rev. A 25, 3130.CrossRefGoogle Scholar
Mehdian, H., Alimohamadi, M. and Hasanbeigi, A. 2012 J. Plasma Phys. 78, 537.CrossRefGoogle Scholar
Mishra, P. K. 2005 Laser Phys. 15, 679.Google Scholar
Ozaki, T.et al. 1992 Nucl. Instrum. Methods Phys. Res. A 318, 101.CrossRefGoogle Scholar
Sadegzadeh, S., Hasanbeigi, A., Mehdian, H. and Alimohamadi, M. 2012 Phys. Plasma 19, 023108.CrossRefGoogle Scholar
Seo, Y., Tripathi, V. K. and Liu, C. S. 1989 Phys. Fluids B 1, 221.CrossRefGoogle Scholar
Serbeto, A., Mendonça, J. T., Tsui, K. H. and Bonifacio, R. 2008 Phys. Plasmas 15, 013110.CrossRefGoogle Scholar
Sprangle, P. and Smith, R. A. 1980 Phys. Rev. A 21, 293.CrossRefGoogle Scholar
Su, D. and Tang, C. J. 2011 Phys. Plasmas 18, 023104.CrossRefGoogle Scholar
Takayama, K. and Hiramatsu, S. 1988 Phys. Rev. A 37, 173.CrossRefGoogle Scholar
Yu, L. H.et al. 1992 Nucl. Instrum. Methods Phys. Res. A 318, 721.Google Scholar